Cargando…
Representation Learning: Recommendation With Knowledge Graph via Triple-Autoencoder
The last decades have witnessed a vast amount of interest and research in feature representation learning from multiple disciplines, such as biology and bioinformatics. Among all the real-world application scenarios, feature extraction from knowledge graph (KG) for personalized recommendation has ac...
Autores principales: | Geng, Yishuai, Xiao, Xiao, Sun, Xiaobing, Zhu, Yi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9204654/ https://www.ncbi.nlm.nih.gov/pubmed/35719384 http://dx.doi.org/10.3389/fgene.2022.891265 |
Ejemplares similares
-
Single-cell RNA-seq data analysis using graph autoencoders and graph attention networks
por: Feng, Xiang, et al.
Publicado: (2022) -
GADTI: Graph Autoencoder Approach for DTI Prediction From Heterogeneous Network
por: Liu, Zhixian, et al.
Publicado: (2021) -
MGRL: Predicting Drug-Disease Associations Based on Multi-Graph Representation Learning
por: Zhao, Bo-Wei, et al.
Publicado: (2021) -
Text-Graph Enhanced Knowledge Graph Representation Learning
por: Hu, Linmei, et al.
Publicado: (2021) -
Deciphering tissue heterogeneity from spatially resolved transcriptomics by the autoencoder-assisted graph convolutional neural network
por: Li, Xinxing, et al.
Publicado: (2023)