Cargando…

Application of response surface methodology for COD and ammonia removal from municipal wastewater treatment plant using acclimatized mixed culture

This study aimed to optimize conditions influencing the removal of chemical oxygen demand (COD) and ammonia-N in municipal wastewater by using acclimatized mixed culture (AMC). Two-level factorial analysis was used to investigate the factors affecting the degradation of COD and ammonia-N (%); ratio...

Descripción completa

Detalles Bibliográficos
Autores principales: Ya'acob, Amirah, Zainol, Norazwina, Aziz, Nor Hazwani
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9204743/
https://www.ncbi.nlm.nih.gov/pubmed/35721676
http://dx.doi.org/10.1016/j.heliyon.2022.e09685
Descripción
Sumario:This study aimed to optimize conditions influencing the removal of chemical oxygen demand (COD) and ammonia-N in municipal wastewater by using acclimatized mixed culture (AMC). Two-level factorial analysis was used to investigate the factors affecting the degradation of COD and ammonia-N (%); ratio of synthetic wastewater (SW) to acclimatized mixed culture (AMC) (1:1 and 3:1), presence and absence of support media (Yes and No), agitation (0 rpm and 100 rpm) and hydraulic retention time (HRT) (2 and 5 days). A central composite design (CCD) under response surface methodology (RSM) determined the optimum agitation (0 rpm and 100 rpm) and retention time (2 and 5 days). The best conditions were at 3:1 of SW: AMC ratio, 100 rpm agitation, without support media, and 5 days retention time. COD and ammonia-N removal achieved until 57.23% and 43.20%, respectively. Optimization study showed the optimum conditions for COD and ammonia-N removal were obtained at 150 rpm agitation speed and 5 days of retention time, at 70.41% and 64.29% respectively. This study discovers the conditions that affect the COD and ammonia-N removal in the municipal wastewater using acclimatized mixed culture.