Cargando…
Assessment of Co-Formulants in Marketed Plant Protection Products by LC-Q-Orbitrap-MS: Application of a Hybrid Data Treatment Strategy Combining Suspect Screening and Unknown Analysis
[Image: see text] The aim of this study was the determination of co-formulants in 15 different chlorantraniliprole- and difenoconazole-based plant protection products (PPPs) belonging to different formulations. Samples were analyzed by ultrahigh-performance liquid chromatography coupled to Q-Orbitra...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9204808/ https://www.ncbi.nlm.nih.gov/pubmed/35670466 http://dx.doi.org/10.1021/acs.jafc.2c01152 |
Sumario: | [Image: see text] The aim of this study was the determination of co-formulants in 15 different chlorantraniliprole- and difenoconazole-based plant protection products (PPPs) belonging to different formulations. Samples were analyzed by ultrahigh-performance liquid chromatography coupled to Q-Orbitrap high-resolution mass accuracy spectrometry (UHPLC-Q-Orbitrap-MS), operating in full-scan MS and data-dependent acquisition (ddMS(2)) modes. A total of 78 co-formulants were tentatively identified by a combination of suspect screening and unknown analysis. Nine of them were later confirmed by analytical standards. Finally, the analytical method was successfully validated and co-formulants were quantified. Linear alkyl ethoxylates (LAS) were the most common type of co-formulant, followed by sodium alkylbenzene sulfonates. Moreover, sodium dodecyl benzene sulfonate had the highest concentration of any co-formulant (up to 32.33 g/L). In all, an innovative identification of co-formulants in a large number of PPPs is presented, which will give room for future studies delving into the composition of PPPs or determining these co-formulants in environmental or agricultural samples. |
---|