Cargando…
Comparison between machine learning methods for mortality prediction for sepsis patients with different social determinants
BACKGROUND: Sepsis is one of the most life-threatening circumstances for critically ill patients in the United States, while diagnosis of sepsis is challenging as a standardized criteria for sepsis identification is still under development. Disparities in social determinants of sepsis patients can i...
Autores principales: | Wang, Hanyin, Li, Yikuan, Naidech, Andrew, Luo, Yuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9204861/ https://www.ncbi.nlm.nih.gov/pubmed/35710407 http://dx.doi.org/10.1186/s12911-022-01871-0 |
Ejemplares similares
-
Using Tweets to Understand How COVID-19–Related Health Beliefs Are Affected in the Age of Social Media: Twitter Data Analysis Study
por: Wang, Hanyin, et al.
Publicado: (2021) -
Machine Learning in Causal Inference: Application in Pharmacovigilance
por: Zhao, Yiqing, et al.
Publicado: (2022) -
Correction to: Machine Learning in Causal Inference: Application in Pharmacovigilance
por: Zhao, Yiqing, et al.
Publicado: (2022) -
Multimodal machine learning in precision health: A scoping review
por: Kline, Adrienne, et al.
Publicado: (2022) -
Using machine learning methods to predict in-hospital mortality of sepsis patients in the ICU
por: Kong, Guilan, et al.
Publicado: (2020)