Cargando…
Multi-view heterogeneous molecular network representation learning for protein–protein interaction prediction
BACKGROUND: Protein–protein interaction (PPI) plays an important role in regulating cells and signals. Despite the ongoing efforts of the bioassay group, continued incomplete data limits our ability to understand the molecular roots of human disease. Therefore, it is urgent to develop a computationa...
Autores principales: | Su, Xiao-Rui, Hu, Lun, You, Zhu-Hong, Hu, Peng-Wei, Zhao, Bo-Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9205098/ https://www.ncbi.nlm.nih.gov/pubmed/35710342 http://dx.doi.org/10.1186/s12859-022-04766-z |
Ejemplares similares
-
iGRLDTI: an improved graph representation learning method for predicting drug–target interactions over heterogeneous biological information network
por: Zhao, Bo-Wei, et al.
Publicado: (2023) -
Learning Representations to Predict Intermolecular Interactions on Large-Scale Heterogeneous Molecular Association Network
por: Yi, Hai-Cheng, et al.
Publicado: (2020) -
A Biological Feature and Heterogeneous Network Representation Learning-Based Framework for Drug–Target Interaction Prediction
por: Liu, Liwei, et al.
Publicado: (2023) -
A multi-view contrastive learning for heterogeneous network embedding
por: Li, Qi, et al.
Publicado: (2023) -
Multi-granularity Complex Network Representation Learning
por: Li, Peisen, et al.
Publicado: (2020)