Cargando…
Detection and quantification of anomalies in communication networks based on LSTM-ARIMA combined model
The anomaly detection for communication networks is significant for improve the quality of communication services and network reliability. However, traditional communication monitoring methods lack proactive monitoring and real-time alerts and the prediction effect of a single machine learning model...
Autores principales: | Xue, Sheng, Chen, Hualiang, Zheng, Xiaoliang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9205417/ https://www.ncbi.nlm.nih.gov/pubmed/35755890 http://dx.doi.org/10.1007/s13042-022-01586-8 |
Ejemplares similares
-
Air-quality prediction based on the ARIMA-CNN-LSTM combination model optimized by dung beetle optimizer
por: Duan, Jiahui, et al.
Publicado: (2023) -
Using LSTM and ARIMA to Simulate and Predict Limestone Price Variations
por: Mbah, Tawum Juvert, et al.
Publicado: (2021) -
Forecasting Covid-19 Transmission with ARIMA and LSTM Techniques in Morocco
por: Rguibi, Mohamed Amine, et al.
Publicado: (2022) -
The Prediction of Influenza-like Illness and Respiratory Disease Using LSTM and ARIMA
por: Tsan, Yu-Tse, et al.
Publicado: (2022) -
The research of ARIMA, GM(1,1), and LSTM models for prediction of TB cases in China
por: Zhao, Daren, et al.
Publicado: (2022)