Cargando…
Enhancing COVID-19 Epidemic Forecasting Accuracy by Combining Real-time and Historical Data From Multiple Internet-Based Sources: Analysis of Social Media Data, Online News Articles, and Search Queries
BACKGROUND: The SARS-COV-2 virus and its variants pose extraordinary challenges for public health worldwide. Timely and accurate forecasting of the COVID-19 epidemic is key to sustaining interventions and policies and efficient resource allocation. Internet-based data sources have shown great potent...
Autores principales: | Li, Jingwei, Huang, Wei, Sia, Choon Ling, Chen, Zhuo, Wu, Tailai, Wang, Qingnan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9205424/ https://www.ncbi.nlm.nih.gov/pubmed/35507921 http://dx.doi.org/10.2196/35266 |
Ejemplares similares
-
Enhancing Influenza Epidemics Forecasting Accuracy in China with Both Official and Unofficial Online News Articles, 2019–2020
por: Li, Jingwei, et al.
Publicado: (2021) -
Forecasting influenza outbreak dynamics in Melbourne from Internet search query surveillance data
por: Moss, Robert, et al.
Publicado: (2016) -
Forecasting influenza epidemics by integrating internet search queries and traditional surveillance data with the support vector machine regression model in Liaoning, from 2011 to 2015
por: Liang, Feng, et al.
Publicado: (2018) -
Predicting seasonal influenza epidemics using cross-hemisphere influenza surveillance data and local internet query data
por: Zhang, Yuzhou, et al.
Publicado: (2019) -
Use of daily Internet search query data improves real-time projections of influenza epidemics
por: Zimmer, Christoph, et al.
Publicado: (2018)