Cargando…
Measuring re-identification risk using a synthetic estimator to enable data sharing
BACKGROUND: One common way to share health data for secondary analysis while meeting increasingly strict privacy regulations is to de-identify it. To demonstrate that the risk of re-identification is acceptably low, re-identification risk metrics are used. There is a dearth of good risk estimators m...
Autores principales: | Jiang, Yangdi, Mosquera, Lucy, Jiang, Bei, Kong, Linglong, El Emam, Khaled |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9205507/ https://www.ncbi.nlm.nih.gov/pubmed/35714132 http://dx.doi.org/10.1371/journal.pone.0269097 |
Ejemplares similares
-
A method for generating synthetic longitudinal health data
por: Mosquera, Lucy, et al.
Publicado: (2023) -
Validating a membership disclosure metric for synthetic health data
por: El Emam, Khaled, et al.
Publicado: (2022) -
Evaluating the utility of synthetic COVID-19 case data
por: El Emam, Khaled, et al.
Publicado: (2021) -
Evaluating Identity Disclosure Risk in Fully Synthetic Health Data: Model Development and Validation
por: El Emam, Khaled, et al.
Publicado: (2020) -
Estimating the re-identification risk of clinical data sets
por: Dankar, Fida Kamal, et al.
Publicado: (2012)