Cargando…
China’s GDP forecasting using Long Short Term Memory Recurrent Neural Network and Hidden Markov Model
This paper presents a Long Short Term Memory Recurrent Neural Network and Hidden Markov Model (LSTM-HMM) to predict China’s Gross Domestic Product (GDP) fluctuation state within a rolling time window. We compare the predictive power of LSTM-HMM with other dynamic forecast systems within different ti...
Autores principales: | Zhang, Junhuan, Wen, Jiaqi, Yang, Zhen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9205526/ https://www.ncbi.nlm.nih.gov/pubmed/35714074 http://dx.doi.org/10.1371/journal.pone.0269529 |
Ejemplares similares
-
Forecast of the Long-Term Trajectory of the Potential GDP of Kazakhstan in the Context of the Global Energy Transition
por: Alpysbaeva, S. N., et al.
Publicado: (2022) -
Research on GDP Forecast Analysis Combining BP Neural Network and ARIMA Model
por: Lu, Shaobo
Publicado: (2021) -
GDP Forecasting: Machine Learning, Linear or Autoregression?
por: Maccarrone, Giovanni, et al.
Publicado: (2021) -
Secondary and Topological Structural Merge Prediction of Alpha-Helical Transmembrane Proteins Using a Hybrid Model Based on Hidden Markov and Long Short-Term Memory Neural Networks
por: Gao, Ting, et al.
Publicado: (2023) -
Forecasting stock prices with long-short term memory neural network based on attention mechanism
por: Qiu, Jiayu, et al.
Publicado: (2020)