Cargando…

Swarm learning for decentralized artificial intelligence in cancer histopathology

Artificial intelligence (AI) can predict the presence of molecular alterations directly from routine histopathology slides. However, training robust AI systems requires large datasets for which data collection faces practical, ethical and legal obstacles. These obstacles could be overcome with swarm...

Descripción completa

Detalles Bibliográficos
Autores principales: Saldanha, Oliver Lester, Quirke, Philip, West, Nicholas P., James, Jacqueline A., Loughrey, Maurice B., Grabsch, Heike I., Salto-Tellez, Manuel, Alwers, Elizabeth, Cifci, Didem, Ghaffari Laleh, Narmin, Seibel, Tobias, Gray, Richard, Hutchins, Gordon G. A., Brenner, Hermann, van Treeck, Marko, Yuan, Tanwei, Brinker, Titus J., Chang-Claude, Jenny, Khader, Firas, Schuppert, Andreas, Luedde, Tom, Trautwein, Christian, Muti, Hannah Sophie, Foersch, Sebastian, Hoffmeister, Michael, Truhn, Daniel, Kather, Jakob Nikolas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group US 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9205774/
https://www.ncbi.nlm.nih.gov/pubmed/35469069
http://dx.doi.org/10.1038/s41591-022-01768-5
_version_ 1784729199140929536
author Saldanha, Oliver Lester
Quirke, Philip
West, Nicholas P.
James, Jacqueline A.
Loughrey, Maurice B.
Grabsch, Heike I.
Salto-Tellez, Manuel
Alwers, Elizabeth
Cifci, Didem
Ghaffari Laleh, Narmin
Seibel, Tobias
Gray, Richard
Hutchins, Gordon G. A.
Brenner, Hermann
van Treeck, Marko
Yuan, Tanwei
Brinker, Titus J.
Chang-Claude, Jenny
Khader, Firas
Schuppert, Andreas
Luedde, Tom
Trautwein, Christian
Muti, Hannah Sophie
Foersch, Sebastian
Hoffmeister, Michael
Truhn, Daniel
Kather, Jakob Nikolas
author_facet Saldanha, Oliver Lester
Quirke, Philip
West, Nicholas P.
James, Jacqueline A.
Loughrey, Maurice B.
Grabsch, Heike I.
Salto-Tellez, Manuel
Alwers, Elizabeth
Cifci, Didem
Ghaffari Laleh, Narmin
Seibel, Tobias
Gray, Richard
Hutchins, Gordon G. A.
Brenner, Hermann
van Treeck, Marko
Yuan, Tanwei
Brinker, Titus J.
Chang-Claude, Jenny
Khader, Firas
Schuppert, Andreas
Luedde, Tom
Trautwein, Christian
Muti, Hannah Sophie
Foersch, Sebastian
Hoffmeister, Michael
Truhn, Daniel
Kather, Jakob Nikolas
author_sort Saldanha, Oliver Lester
collection PubMed
description Artificial intelligence (AI) can predict the presence of molecular alterations directly from routine histopathology slides. However, training robust AI systems requires large datasets for which data collection faces practical, ethical and legal obstacles. These obstacles could be overcome with swarm learning (SL), in which partners jointly train AI models while avoiding data transfer and monopolistic data governance. Here, we demonstrate the successful use of SL in large, multicentric datasets of gigapixel histopathology images from over 5,000 patients. We show that AI models trained using SL can predict BRAF mutational status and microsatellite instability directly from hematoxylin and eosin (H&E)-stained pathology slides of colorectal cancer. We trained AI models on three patient cohorts from Northern Ireland, Germany and the United States, and validated the prediction performance in two independent datasets from the United Kingdom. Our data show that SL-trained AI models outperform most locally trained models, and perform on par with models that are trained on the merged datasets. In addition, we show that SL-based AI models are data efficient. In the future, SL can be used to train distributed AI models for any histopathology image analysis task, eliminating the need for data transfer.
format Online
Article
Text
id pubmed-9205774
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group US
record_format MEDLINE/PubMed
spelling pubmed-92057742022-06-19 Swarm learning for decentralized artificial intelligence in cancer histopathology Saldanha, Oliver Lester Quirke, Philip West, Nicholas P. James, Jacqueline A. Loughrey, Maurice B. Grabsch, Heike I. Salto-Tellez, Manuel Alwers, Elizabeth Cifci, Didem Ghaffari Laleh, Narmin Seibel, Tobias Gray, Richard Hutchins, Gordon G. A. Brenner, Hermann van Treeck, Marko Yuan, Tanwei Brinker, Titus J. Chang-Claude, Jenny Khader, Firas Schuppert, Andreas Luedde, Tom Trautwein, Christian Muti, Hannah Sophie Foersch, Sebastian Hoffmeister, Michael Truhn, Daniel Kather, Jakob Nikolas Nat Med Article Artificial intelligence (AI) can predict the presence of molecular alterations directly from routine histopathology slides. However, training robust AI systems requires large datasets for which data collection faces practical, ethical and legal obstacles. These obstacles could be overcome with swarm learning (SL), in which partners jointly train AI models while avoiding data transfer and monopolistic data governance. Here, we demonstrate the successful use of SL in large, multicentric datasets of gigapixel histopathology images from over 5,000 patients. We show that AI models trained using SL can predict BRAF mutational status and microsatellite instability directly from hematoxylin and eosin (H&E)-stained pathology slides of colorectal cancer. We trained AI models on three patient cohorts from Northern Ireland, Germany and the United States, and validated the prediction performance in two independent datasets from the United Kingdom. Our data show that SL-trained AI models outperform most locally trained models, and perform on par with models that are trained on the merged datasets. In addition, we show that SL-based AI models are data efficient. In the future, SL can be used to train distributed AI models for any histopathology image analysis task, eliminating the need for data transfer. Nature Publishing Group US 2022-04-25 2022 /pmc/articles/PMC9205774/ /pubmed/35469069 http://dx.doi.org/10.1038/s41591-022-01768-5 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Saldanha, Oliver Lester
Quirke, Philip
West, Nicholas P.
James, Jacqueline A.
Loughrey, Maurice B.
Grabsch, Heike I.
Salto-Tellez, Manuel
Alwers, Elizabeth
Cifci, Didem
Ghaffari Laleh, Narmin
Seibel, Tobias
Gray, Richard
Hutchins, Gordon G. A.
Brenner, Hermann
van Treeck, Marko
Yuan, Tanwei
Brinker, Titus J.
Chang-Claude, Jenny
Khader, Firas
Schuppert, Andreas
Luedde, Tom
Trautwein, Christian
Muti, Hannah Sophie
Foersch, Sebastian
Hoffmeister, Michael
Truhn, Daniel
Kather, Jakob Nikolas
Swarm learning for decentralized artificial intelligence in cancer histopathology
title Swarm learning for decentralized artificial intelligence in cancer histopathology
title_full Swarm learning for decentralized artificial intelligence in cancer histopathology
title_fullStr Swarm learning for decentralized artificial intelligence in cancer histopathology
title_full_unstemmed Swarm learning for decentralized artificial intelligence in cancer histopathology
title_short Swarm learning for decentralized artificial intelligence in cancer histopathology
title_sort swarm learning for decentralized artificial intelligence in cancer histopathology
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9205774/
https://www.ncbi.nlm.nih.gov/pubmed/35469069
http://dx.doi.org/10.1038/s41591-022-01768-5
work_keys_str_mv AT saldanhaoliverlester swarmlearningfordecentralizedartificialintelligenceincancerhistopathology
AT quirkephilip swarmlearningfordecentralizedartificialintelligenceincancerhistopathology
AT westnicholasp swarmlearningfordecentralizedartificialintelligenceincancerhistopathology
AT jamesjacquelinea swarmlearningfordecentralizedartificialintelligenceincancerhistopathology
AT loughreymauriceb swarmlearningfordecentralizedartificialintelligenceincancerhistopathology
AT grabschheikei swarmlearningfordecentralizedartificialintelligenceincancerhistopathology
AT saltotellezmanuel swarmlearningfordecentralizedartificialintelligenceincancerhistopathology
AT alwerselizabeth swarmlearningfordecentralizedartificialintelligenceincancerhistopathology
AT cifcididem swarmlearningfordecentralizedartificialintelligenceincancerhistopathology
AT ghaffarilalehnarmin swarmlearningfordecentralizedartificialintelligenceincancerhistopathology
AT seibeltobias swarmlearningfordecentralizedartificialintelligenceincancerhistopathology
AT grayrichard swarmlearningfordecentralizedartificialintelligenceincancerhistopathology
AT hutchinsgordonga swarmlearningfordecentralizedartificialintelligenceincancerhistopathology
AT brennerhermann swarmlearningfordecentralizedartificialintelligenceincancerhistopathology
AT vantreeckmarko swarmlearningfordecentralizedartificialintelligenceincancerhistopathology
AT yuantanwei swarmlearningfordecentralizedartificialintelligenceincancerhistopathology
AT brinkertitusj swarmlearningfordecentralizedartificialintelligenceincancerhistopathology
AT changclaudejenny swarmlearningfordecentralizedartificialintelligenceincancerhistopathology
AT khaderfiras swarmlearningfordecentralizedartificialintelligenceincancerhistopathology
AT schuppertandreas swarmlearningfordecentralizedartificialintelligenceincancerhistopathology
AT lueddetom swarmlearningfordecentralizedartificialintelligenceincancerhistopathology
AT trautweinchristian swarmlearningfordecentralizedartificialintelligenceincancerhistopathology
AT mutihannahsophie swarmlearningfordecentralizedartificialintelligenceincancerhistopathology
AT foerschsebastian swarmlearningfordecentralizedartificialintelligenceincancerhistopathology
AT hoffmeistermichael swarmlearningfordecentralizedartificialintelligenceincancerhistopathology
AT truhndaniel swarmlearningfordecentralizedartificialintelligenceincancerhistopathology
AT katherjakobnikolas swarmlearningfordecentralizedartificialintelligenceincancerhistopathology