Cargando…
Swarm learning for decentralized artificial intelligence in cancer histopathology
Artificial intelligence (AI) can predict the presence of molecular alterations directly from routine histopathology slides. However, training robust AI systems requires large datasets for which data collection faces practical, ethical and legal obstacles. These obstacles could be overcome with swarm...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9205774/ https://www.ncbi.nlm.nih.gov/pubmed/35469069 http://dx.doi.org/10.1038/s41591-022-01768-5 |
_version_ | 1784729199140929536 |
---|---|
author | Saldanha, Oliver Lester Quirke, Philip West, Nicholas P. James, Jacqueline A. Loughrey, Maurice B. Grabsch, Heike I. Salto-Tellez, Manuel Alwers, Elizabeth Cifci, Didem Ghaffari Laleh, Narmin Seibel, Tobias Gray, Richard Hutchins, Gordon G. A. Brenner, Hermann van Treeck, Marko Yuan, Tanwei Brinker, Titus J. Chang-Claude, Jenny Khader, Firas Schuppert, Andreas Luedde, Tom Trautwein, Christian Muti, Hannah Sophie Foersch, Sebastian Hoffmeister, Michael Truhn, Daniel Kather, Jakob Nikolas |
author_facet | Saldanha, Oliver Lester Quirke, Philip West, Nicholas P. James, Jacqueline A. Loughrey, Maurice B. Grabsch, Heike I. Salto-Tellez, Manuel Alwers, Elizabeth Cifci, Didem Ghaffari Laleh, Narmin Seibel, Tobias Gray, Richard Hutchins, Gordon G. A. Brenner, Hermann van Treeck, Marko Yuan, Tanwei Brinker, Titus J. Chang-Claude, Jenny Khader, Firas Schuppert, Andreas Luedde, Tom Trautwein, Christian Muti, Hannah Sophie Foersch, Sebastian Hoffmeister, Michael Truhn, Daniel Kather, Jakob Nikolas |
author_sort | Saldanha, Oliver Lester |
collection | PubMed |
description | Artificial intelligence (AI) can predict the presence of molecular alterations directly from routine histopathology slides. However, training robust AI systems requires large datasets for which data collection faces practical, ethical and legal obstacles. These obstacles could be overcome with swarm learning (SL), in which partners jointly train AI models while avoiding data transfer and monopolistic data governance. Here, we demonstrate the successful use of SL in large, multicentric datasets of gigapixel histopathology images from over 5,000 patients. We show that AI models trained using SL can predict BRAF mutational status and microsatellite instability directly from hematoxylin and eosin (H&E)-stained pathology slides of colorectal cancer. We trained AI models on three patient cohorts from Northern Ireland, Germany and the United States, and validated the prediction performance in two independent datasets from the United Kingdom. Our data show that SL-trained AI models outperform most locally trained models, and perform on par with models that are trained on the merged datasets. In addition, we show that SL-based AI models are data efficient. In the future, SL can be used to train distributed AI models for any histopathology image analysis task, eliminating the need for data transfer. |
format | Online Article Text |
id | pubmed-9205774 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Nature Publishing Group US |
record_format | MEDLINE/PubMed |
spelling | pubmed-92057742022-06-19 Swarm learning for decentralized artificial intelligence in cancer histopathology Saldanha, Oliver Lester Quirke, Philip West, Nicholas P. James, Jacqueline A. Loughrey, Maurice B. Grabsch, Heike I. Salto-Tellez, Manuel Alwers, Elizabeth Cifci, Didem Ghaffari Laleh, Narmin Seibel, Tobias Gray, Richard Hutchins, Gordon G. A. Brenner, Hermann van Treeck, Marko Yuan, Tanwei Brinker, Titus J. Chang-Claude, Jenny Khader, Firas Schuppert, Andreas Luedde, Tom Trautwein, Christian Muti, Hannah Sophie Foersch, Sebastian Hoffmeister, Michael Truhn, Daniel Kather, Jakob Nikolas Nat Med Article Artificial intelligence (AI) can predict the presence of molecular alterations directly from routine histopathology slides. However, training robust AI systems requires large datasets for which data collection faces practical, ethical and legal obstacles. These obstacles could be overcome with swarm learning (SL), in which partners jointly train AI models while avoiding data transfer and monopolistic data governance. Here, we demonstrate the successful use of SL in large, multicentric datasets of gigapixel histopathology images from over 5,000 patients. We show that AI models trained using SL can predict BRAF mutational status and microsatellite instability directly from hematoxylin and eosin (H&E)-stained pathology slides of colorectal cancer. We trained AI models on three patient cohorts from Northern Ireland, Germany and the United States, and validated the prediction performance in two independent datasets from the United Kingdom. Our data show that SL-trained AI models outperform most locally trained models, and perform on par with models that are trained on the merged datasets. In addition, we show that SL-based AI models are data efficient. In the future, SL can be used to train distributed AI models for any histopathology image analysis task, eliminating the need for data transfer. Nature Publishing Group US 2022-04-25 2022 /pmc/articles/PMC9205774/ /pubmed/35469069 http://dx.doi.org/10.1038/s41591-022-01768-5 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Saldanha, Oliver Lester Quirke, Philip West, Nicholas P. James, Jacqueline A. Loughrey, Maurice B. Grabsch, Heike I. Salto-Tellez, Manuel Alwers, Elizabeth Cifci, Didem Ghaffari Laleh, Narmin Seibel, Tobias Gray, Richard Hutchins, Gordon G. A. Brenner, Hermann van Treeck, Marko Yuan, Tanwei Brinker, Titus J. Chang-Claude, Jenny Khader, Firas Schuppert, Andreas Luedde, Tom Trautwein, Christian Muti, Hannah Sophie Foersch, Sebastian Hoffmeister, Michael Truhn, Daniel Kather, Jakob Nikolas Swarm learning for decentralized artificial intelligence in cancer histopathology |
title | Swarm learning for decentralized artificial intelligence in cancer histopathology |
title_full | Swarm learning for decentralized artificial intelligence in cancer histopathology |
title_fullStr | Swarm learning for decentralized artificial intelligence in cancer histopathology |
title_full_unstemmed | Swarm learning for decentralized artificial intelligence in cancer histopathology |
title_short | Swarm learning for decentralized artificial intelligence in cancer histopathology |
title_sort | swarm learning for decentralized artificial intelligence in cancer histopathology |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9205774/ https://www.ncbi.nlm.nih.gov/pubmed/35469069 http://dx.doi.org/10.1038/s41591-022-01768-5 |
work_keys_str_mv | AT saldanhaoliverlester swarmlearningfordecentralizedartificialintelligenceincancerhistopathology AT quirkephilip swarmlearningfordecentralizedartificialintelligenceincancerhistopathology AT westnicholasp swarmlearningfordecentralizedartificialintelligenceincancerhistopathology AT jamesjacquelinea swarmlearningfordecentralizedartificialintelligenceincancerhistopathology AT loughreymauriceb swarmlearningfordecentralizedartificialintelligenceincancerhistopathology AT grabschheikei swarmlearningfordecentralizedartificialintelligenceincancerhistopathology AT saltotellezmanuel swarmlearningfordecentralizedartificialintelligenceincancerhistopathology AT alwerselizabeth swarmlearningfordecentralizedartificialintelligenceincancerhistopathology AT cifcididem swarmlearningfordecentralizedartificialintelligenceincancerhistopathology AT ghaffarilalehnarmin swarmlearningfordecentralizedartificialintelligenceincancerhistopathology AT seibeltobias swarmlearningfordecentralizedartificialintelligenceincancerhistopathology AT grayrichard swarmlearningfordecentralizedartificialintelligenceincancerhistopathology AT hutchinsgordonga swarmlearningfordecentralizedartificialintelligenceincancerhistopathology AT brennerhermann swarmlearningfordecentralizedartificialintelligenceincancerhistopathology AT vantreeckmarko swarmlearningfordecentralizedartificialintelligenceincancerhistopathology AT yuantanwei swarmlearningfordecentralizedartificialintelligenceincancerhistopathology AT brinkertitusj swarmlearningfordecentralizedartificialintelligenceincancerhistopathology AT changclaudejenny swarmlearningfordecentralizedartificialintelligenceincancerhistopathology AT khaderfiras swarmlearningfordecentralizedartificialintelligenceincancerhistopathology AT schuppertandreas swarmlearningfordecentralizedartificialintelligenceincancerhistopathology AT lueddetom swarmlearningfordecentralizedartificialintelligenceincancerhistopathology AT trautweinchristian swarmlearningfordecentralizedartificialintelligenceincancerhistopathology AT mutihannahsophie swarmlearningfordecentralizedartificialintelligenceincancerhistopathology AT foerschsebastian swarmlearningfordecentralizedartificialintelligenceincancerhistopathology AT hoffmeistermichael swarmlearningfordecentralizedartificialintelligenceincancerhistopathology AT truhndaniel swarmlearningfordecentralizedartificialintelligenceincancerhistopathology AT katherjakobnikolas swarmlearningfordecentralizedartificialintelligenceincancerhistopathology |