Cargando…
Machine learning model to predict mental health crises from electronic health records
The timely identification of patients who are at risk of a mental health crisis can lead to improved outcomes and to the mitigation of burdens and costs. However, the high prevalence of mental health problems means that the manual review of complex patient records to make proactive care decisions is...
Autores principales: | Garriga, Roger, Mas, Javier, Abraha, Semhar, Nolan, Jon, Harrison, Oliver, Tadros, George, Matic, Aleksandar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9205775/ https://www.ncbi.nlm.nih.gov/pubmed/35577964 http://dx.doi.org/10.1038/s41591-022-01811-5 |
Ejemplares similares
-
Combining clinical notes with structured electronic health records enhances the prediction of mental health crises
por: Garriga, Roger, et al.
Publicado: (2023) -
Innovation is needed in creating electronic health records for humanitarian crises and displaced populations
por: Shrestha, Anmol, et al.
Publicado: (2022) -
Economic crises and mental health: unhappy bedfellows
por: Skuse, David
Publicado: (2013) -
“Hitting the wall”: Lived experiences of mental health crises
por: Borg, Marit, et al.
Publicado: (2011) -
Reforming mental health in Lebanon amid refugee crises
Publicado: (2016)