Cargando…
ADAMTS7 Attenuates House Dust Mite-Induced Airway Inflammation and Th2 Immune Responses
PURPOSE: ADAMTS7 is a secreted metalloproteinase enzyme and proteoglycan associated with the early progression of coronary artery disease. However, there is limited information regarding the role of ADAMTS7 in lung adaptive immunity and inflammation. Thus, we sought to assess whether ADAMTS7 express...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9205806/ https://www.ncbi.nlm.nih.gov/pubmed/35503474 http://dx.doi.org/10.1007/s00408-022-00538-x |
Sumario: | PURPOSE: ADAMTS7 is a secreted metalloproteinase enzyme and proteoglycan associated with the early progression of coronary artery disease. However, there is limited information regarding the role of ADAMTS7 in lung adaptive immunity and inflammation. Thus, we sought to assess whether ADAMTS7 expression in the lung modulates house dust mite (HDM)-induced airway inflammation and Th2 immune response. METHODS: The role of ADAMTS7 in HDM-induced airway disease was assessed in ADAMTS7-deficient (ADAMTS7(−/−)) mice and compared with the wild-type control mice by flow cytometry, ELISA, and histopathology. Furthermore, the antigen priming capability of dendritic cells (DC) was determined ex vivo by employing coculture with CD4(+) OT-II cells. RESULTS: ADAMTS7(−/−) mice develop an augmented eosinophilic airway inflammation, mucous cell metaplasia, and increased Th2 immune response to inhaled HDM. In addition, allergen uptake by lung DC and migration to draining mediastinal lymph node were significantly increased in ADAMTS7(−/−) mice, which shows an enhanced capacity to mount allergen-specific T-cell proliferation and effector Th2 cytokine productions. We propose that the mechanism by which ADAMTS7 negatively regulates DC function involves attenuated antigen uptake and presentation capabilities, which reduces allergic sensitization and Th2 immune responses in the lung. CONCLUSION: In aggregate, we provide compelling evidence that ADAMTS7 plays a pivotal role in allergic airway disease and Th2 immunity and would be an attractive target for asthma. |
---|