Cargando…
Integration of feature vectors from raw laboratory, medication and procedure names improves the precision and recall of models to predict postoperative mortality and acute kidney injury
Manuscripts that have successfully used machine learning (ML) to predict a variety of perioperative outcomes often use only a limited number of features selected by a clinician. We hypothesized that techniques leveraging a broad set of features for patient laboratory results, medications, and the su...
Autores principales: | Hofer, Ira S., Kupina, Marina, Laddaran, Lori, Halperin, Eran |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9205878/ https://www.ncbi.nlm.nih.gov/pubmed/35715454 http://dx.doi.org/10.1038/s41598-022-13879-7 |
Ejemplares similares
-
Health Literacy and Recall of Postoperative Instructions in Patients Undergoing the Lapidus Procedure
por: Garfinkel, Jonathan H., et al.
Publicado: (2020) -
Which Information Helps Resolve Recall Failures for Familiar People's Names?
por: Brédart, Serge
Publicado: (2018) -
A direct replication and extension of Popp and Serra (2016, experiment 1): better free recall and worse cued recall of animal names than object names, accounting for semantic similarity
por: Mah, Eric Y., et al.
Publicado: (2023) -
Validation of the face-name pairs task in major depression: impaired recall but not recognition
por: Smith, Kimberley J., et al.
Publicado: (2014) -
Precision and recall estimates for two-hybrid screens
por: Huang, Hailiang, et al.
Publicado: (2009)