Cargando…
scCAN: single-cell clustering using autoencoder and network fusion
Unsupervised clustering of single-cell RNA sequencing data (scRNA-seq) is important because it allows us to identify putative cell types. However, the large number of cells (up to millions), the high-dimensionality of the data (tens of thousands of genes), and the high dropout rates all present subs...
Autores principales: | Tran, Bang, Tran, Duc, Nguyen, Hung, Ro, Seungil, Nguyen, Tin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9206025/ https://www.ncbi.nlm.nih.gov/pubmed/35715568 http://dx.doi.org/10.1038/s41598-022-14218-6 |
Ejemplares similares
-
Fast and precise single-cell data analysis using a hierarchical autoencoder
por: Tran, Duc, et al.
Publicado: (2021) -
A comprehensive survey of regulatory network inference methods using single cell RNA sequencing data
por: Nguyen, Hung, et al.
Publicado: (2020) -
A novel method for single-cell data imputation using subspace regression
por: Tran, Duc, et al.
Publicado: (2022) -
scBGEDA: deep single-cell clustering analysis via a dual denoising autoencoder with bipartite graph ensemble clustering
por: Wang, Yunhe, et al.
Publicado: (2023) -
SMRT: Randomized Data Transformation for Cancer Subtyping and Big Data Analysis
por: Nguyen, Hung, et al.
Publicado: (2021)