Cargando…

An antibacterial compound pyrimidomycin produced by Streptomyces sp. PSAA01 isolated from soil of Eastern Himalayan foothill

Selective isolation of soil Actinobacteria was undertaken to isolate a new class of antibiotics and bioactive molecules. A Streptomyces sp. PSAA01 (= MTCC 13,157), isolated from soil of Eastern Himalaya foothill was cultivated on a large scale for the production of the antimicrobial SM02. It has bee...

Descripción completa

Detalles Bibliográficos
Autores principales: Das, Prasenjit, Kundu, Shampa, Maiti, Pulak Kumar, Mandal, Saurodeep, Sahoo, Prithidipa, Mandal, Sukhendu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9206078/
https://www.ncbi.nlm.nih.gov/pubmed/35715695
http://dx.doi.org/10.1038/s41598-022-14549-4
Descripción
Sumario:Selective isolation of soil Actinobacteria was undertaken to isolate a new class of antibiotics and bioactive molecules. A Streptomyces sp. PSAA01 (= MTCC 13,157), isolated from soil of Eastern Himalaya foothill was cultivated on a large scale for the production of the antimicrobial SM02. It has been found that the maximum amount of SM02 produced while PSAA01 was grown in ISP-2 medium (pH 7.0) for 7 days at 30 °C in shaking (180 rpm) condition. A significant zone of inhibition against Staphylococcus aureus MTCC 96 has been found with the crude cell-free culture media (50 µL) of 7 days grown PSAA01. After the purification and chemical structural characterization, we found that SM02 is a new antimicrobial having 746 dalton molecular weight. The compound SM02 contains pyrimidine moiety in it and is produced by a species of Streptomyces and thus we have named this antibiotic pyrimidomycin. The antimicrobial spectrum of pyrimidomycin has been found to be restricted in Gram-positive organisms with a MIC of 12 µg/mL. SM02 was found active against Mycobacterium sp. and also multi-drug resistant Gram-positive bacteria with similar potency and found to disrupt the bacterial cell wall. Pyrimidomycin also showed significant impairment in the biofilm formation by S. aureus. Furthermore, pyrimidomycin showed synergy with the most used antibiotic like ampicillin, vancomycin and chloramphenicol. Pyrimidomycin did not have cytotoxicity towards human cell lines indicating its limited activity within bacteria.