Cargando…
Explainable artificial intelligence approach in combating real-time surveillance of COVID19 pandemic from CT scan and X-ray images using ensemble model
Population size has made disease monitoring a major concern in the healthcare system, due to which auto-detection has become a top priority. Intelligent disease detection frameworks enable doctors to recognize illnesses, provide stable and accurate results, and lower mortality rates. An acute and se...
Autores principales: | Ullah, Farhan, Moon, Jihoon, Naeem, Hamad, Jabbar, Sohail |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9206105/ https://www.ncbi.nlm.nih.gov/pubmed/35754515 http://dx.doi.org/10.1007/s11227-022-04631-z |
Ejemplares similares
-
Explainable Artificial Intelligence-Based IoT Device Malware Detection Mechanism Using Image Visualization and Fine-Tuned CNN-Based Transfer Learning Model
por: Naeem, Hamad, et al.
Publicado: (2022) -
Explainable Artificial Intelligence for Bias Detection in COVID CT-Scan Classifiers
por: Palatnik de Sousa, Iam, et al.
Publicado: (2021) -
Artificial Intelligence-Based Recognition of Different Types of Shoulder Implants in X-ray Scans Based on Dense Residual Ensemble-Network for Personalized Medicine
por: Sultan, Haseeb, et al.
Publicado: (2021) -
To explain or not to explain?—Artificial intelligence explainability in clinical decision support systems
por: Amann, Julia, et al.
Publicado: (2022) -
Artificial intelligence guided enhancement of digital PET: scans as fast as CT?
por: Hosch, René, et al.
Publicado: (2022)