Cargando…
A versatile cortical pattern-forming circuit based on Rho, F-actin, Ect2, and RGA-3/4
Many cells can generate complementary traveling waves of actin filaments (F-actin) and cytoskeletal regulators. This phenomenon, termed cortical excitability, results from coupled positive and negative feedback loops of cytoskeletal regulators. The nature of these feedback loops, however, remains po...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Rockefeller University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9206115/ https://www.ncbi.nlm.nih.gov/pubmed/35708547 http://dx.doi.org/10.1083/jcb.202203017 |
_version_ | 1784729272043175936 |
---|---|
author | Michaud, Ani Leda, Marcin Swider, Zachary T. Kim, Songeun He, Jiaye Landino, Jennifer Valley, Jenna R. Huisken, Jan Goryachev, Andrew B. von Dassow, George Bement, William M. |
author_facet | Michaud, Ani Leda, Marcin Swider, Zachary T. Kim, Songeun He, Jiaye Landino, Jennifer Valley, Jenna R. Huisken, Jan Goryachev, Andrew B. von Dassow, George Bement, William M. |
author_sort | Michaud, Ani |
collection | PubMed |
description | Many cells can generate complementary traveling waves of actin filaments (F-actin) and cytoskeletal regulators. This phenomenon, termed cortical excitability, results from coupled positive and negative feedback loops of cytoskeletal regulators. The nature of these feedback loops, however, remains poorly understood. We assessed the role of the Rho GAP RGA-3/4 in the cortical excitability that accompanies cytokinesis in both frog and starfish. RGA-3/4 localizes to the cytokinetic apparatus, “chases” Rho waves in an F-actin–dependent manner, and when coexpressed with the Rho GEF Ect2, is sufficient to convert the normally quiescent, immature Xenopus oocyte cortex into a dramatically excited state. Experiments and modeling show that changing the ratio of RGA-3/4 to Ect2 produces cortical behaviors ranging from pulses to complex waves of Rho activity. We conclude that RGA-3/4, Ect2, Rho, and F-actin form the core of a versatile circuit that drives a diverse range of cortical behaviors, and we demonstrate that the immature oocyte is a powerful model for characterizing these dynamics. |
format | Online Article Text |
id | pubmed-9206115 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-92061152022-07-06 A versatile cortical pattern-forming circuit based on Rho, F-actin, Ect2, and RGA-3/4 Michaud, Ani Leda, Marcin Swider, Zachary T. Kim, Songeun He, Jiaye Landino, Jennifer Valley, Jenna R. Huisken, Jan Goryachev, Andrew B. von Dassow, George Bement, William M. J Cell Biol Article Many cells can generate complementary traveling waves of actin filaments (F-actin) and cytoskeletal regulators. This phenomenon, termed cortical excitability, results from coupled positive and negative feedback loops of cytoskeletal regulators. The nature of these feedback loops, however, remains poorly understood. We assessed the role of the Rho GAP RGA-3/4 in the cortical excitability that accompanies cytokinesis in both frog and starfish. RGA-3/4 localizes to the cytokinetic apparatus, “chases” Rho waves in an F-actin–dependent manner, and when coexpressed with the Rho GEF Ect2, is sufficient to convert the normally quiescent, immature Xenopus oocyte cortex into a dramatically excited state. Experiments and modeling show that changing the ratio of RGA-3/4 to Ect2 produces cortical behaviors ranging from pulses to complex waves of Rho activity. We conclude that RGA-3/4, Ect2, Rho, and F-actin form the core of a versatile circuit that drives a diverse range of cortical behaviors, and we demonstrate that the immature oocyte is a powerful model for characterizing these dynamics. Rockefeller University Press 2022-06-16 /pmc/articles/PMC9206115/ /pubmed/35708547 http://dx.doi.org/10.1083/jcb.202203017 Text en © 2022 Michaud et al. https://creativecommons.org/licenses/by/4.0/This article is available under a Creative Commons License (Attribution 4.0 International, as described at https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Michaud, Ani Leda, Marcin Swider, Zachary T. Kim, Songeun He, Jiaye Landino, Jennifer Valley, Jenna R. Huisken, Jan Goryachev, Andrew B. von Dassow, George Bement, William M. A versatile cortical pattern-forming circuit based on Rho, F-actin, Ect2, and RGA-3/4 |
title | A versatile cortical pattern-forming circuit based on Rho, F-actin, Ect2, and RGA-3/4 |
title_full | A versatile cortical pattern-forming circuit based on Rho, F-actin, Ect2, and RGA-3/4 |
title_fullStr | A versatile cortical pattern-forming circuit based on Rho, F-actin, Ect2, and RGA-3/4 |
title_full_unstemmed | A versatile cortical pattern-forming circuit based on Rho, F-actin, Ect2, and RGA-3/4 |
title_short | A versatile cortical pattern-forming circuit based on Rho, F-actin, Ect2, and RGA-3/4 |
title_sort | versatile cortical pattern-forming circuit based on rho, f-actin, ect2, and rga-3/4 |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9206115/ https://www.ncbi.nlm.nih.gov/pubmed/35708547 http://dx.doi.org/10.1083/jcb.202203017 |
work_keys_str_mv | AT michaudani aversatilecorticalpatternformingcircuitbasedonrhofactinect2andrga34 AT ledamarcin aversatilecorticalpatternformingcircuitbasedonrhofactinect2andrga34 AT swiderzacharyt aversatilecorticalpatternformingcircuitbasedonrhofactinect2andrga34 AT kimsongeun aversatilecorticalpatternformingcircuitbasedonrhofactinect2andrga34 AT hejiaye aversatilecorticalpatternformingcircuitbasedonrhofactinect2andrga34 AT landinojennifer aversatilecorticalpatternformingcircuitbasedonrhofactinect2andrga34 AT valleyjennar aversatilecorticalpatternformingcircuitbasedonrhofactinect2andrga34 AT huiskenjan aversatilecorticalpatternformingcircuitbasedonrhofactinect2andrga34 AT goryachevandrewb aversatilecorticalpatternformingcircuitbasedonrhofactinect2andrga34 AT vondassowgeorge aversatilecorticalpatternformingcircuitbasedonrhofactinect2andrga34 AT bementwilliamm aversatilecorticalpatternformingcircuitbasedonrhofactinect2andrga34 AT michaudani versatilecorticalpatternformingcircuitbasedonrhofactinect2andrga34 AT ledamarcin versatilecorticalpatternformingcircuitbasedonrhofactinect2andrga34 AT swiderzacharyt versatilecorticalpatternformingcircuitbasedonrhofactinect2andrga34 AT kimsongeun versatilecorticalpatternformingcircuitbasedonrhofactinect2andrga34 AT hejiaye versatilecorticalpatternformingcircuitbasedonrhofactinect2andrga34 AT landinojennifer versatilecorticalpatternformingcircuitbasedonrhofactinect2andrga34 AT valleyjennar versatilecorticalpatternformingcircuitbasedonrhofactinect2andrga34 AT huiskenjan versatilecorticalpatternformingcircuitbasedonrhofactinect2andrga34 AT goryachevandrewb versatilecorticalpatternformingcircuitbasedonrhofactinect2andrga34 AT vondassowgeorge versatilecorticalpatternformingcircuitbasedonrhofactinect2andrga34 AT bementwilliamm versatilecorticalpatternformingcircuitbasedonrhofactinect2andrga34 |