Cargando…

A versatile cortical pattern-forming circuit based on Rho, F-actin, Ect2, and RGA-3/4

Many cells can generate complementary traveling waves of actin filaments (F-actin) and cytoskeletal regulators. This phenomenon, termed cortical excitability, results from coupled positive and negative feedback loops of cytoskeletal regulators. The nature of these feedback loops, however, remains po...

Descripción completa

Detalles Bibliográficos
Autores principales: Michaud, Ani, Leda, Marcin, Swider, Zachary T., Kim, Songeun, He, Jiaye, Landino, Jennifer, Valley, Jenna R., Huisken, Jan, Goryachev, Andrew B., von Dassow, George, Bement, William M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Rockefeller University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9206115/
https://www.ncbi.nlm.nih.gov/pubmed/35708547
http://dx.doi.org/10.1083/jcb.202203017
_version_ 1784729272043175936
author Michaud, Ani
Leda, Marcin
Swider, Zachary T.
Kim, Songeun
He, Jiaye
Landino, Jennifer
Valley, Jenna R.
Huisken, Jan
Goryachev, Andrew B.
von Dassow, George
Bement, William M.
author_facet Michaud, Ani
Leda, Marcin
Swider, Zachary T.
Kim, Songeun
He, Jiaye
Landino, Jennifer
Valley, Jenna R.
Huisken, Jan
Goryachev, Andrew B.
von Dassow, George
Bement, William M.
author_sort Michaud, Ani
collection PubMed
description Many cells can generate complementary traveling waves of actin filaments (F-actin) and cytoskeletal regulators. This phenomenon, termed cortical excitability, results from coupled positive and negative feedback loops of cytoskeletal regulators. The nature of these feedback loops, however, remains poorly understood. We assessed the role of the Rho GAP RGA-3/4 in the cortical excitability that accompanies cytokinesis in both frog and starfish. RGA-3/4 localizes to the cytokinetic apparatus, “chases” Rho waves in an F-actin–dependent manner, and when coexpressed with the Rho GEF Ect2, is sufficient to convert the normally quiescent, immature Xenopus oocyte cortex into a dramatically excited state. Experiments and modeling show that changing the ratio of RGA-3/4 to Ect2 produces cortical behaviors ranging from pulses to complex waves of Rho activity. We conclude that RGA-3/4, Ect2, Rho, and F-actin form the core of a versatile circuit that drives a diverse range of cortical behaviors, and we demonstrate that the immature oocyte is a powerful model for characterizing these dynamics.
format Online
Article
Text
id pubmed-9206115
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-92061152022-07-06 A versatile cortical pattern-forming circuit based on Rho, F-actin, Ect2, and RGA-3/4 Michaud, Ani Leda, Marcin Swider, Zachary T. Kim, Songeun He, Jiaye Landino, Jennifer Valley, Jenna R. Huisken, Jan Goryachev, Andrew B. von Dassow, George Bement, William M. J Cell Biol Article Many cells can generate complementary traveling waves of actin filaments (F-actin) and cytoskeletal regulators. This phenomenon, termed cortical excitability, results from coupled positive and negative feedback loops of cytoskeletal regulators. The nature of these feedback loops, however, remains poorly understood. We assessed the role of the Rho GAP RGA-3/4 in the cortical excitability that accompanies cytokinesis in both frog and starfish. RGA-3/4 localizes to the cytokinetic apparatus, “chases” Rho waves in an F-actin–dependent manner, and when coexpressed with the Rho GEF Ect2, is sufficient to convert the normally quiescent, immature Xenopus oocyte cortex into a dramatically excited state. Experiments and modeling show that changing the ratio of RGA-3/4 to Ect2 produces cortical behaviors ranging from pulses to complex waves of Rho activity. We conclude that RGA-3/4, Ect2, Rho, and F-actin form the core of a versatile circuit that drives a diverse range of cortical behaviors, and we demonstrate that the immature oocyte is a powerful model for characterizing these dynamics. Rockefeller University Press 2022-06-16 /pmc/articles/PMC9206115/ /pubmed/35708547 http://dx.doi.org/10.1083/jcb.202203017 Text en © 2022 Michaud et al. https://creativecommons.org/licenses/by/4.0/This article is available under a Creative Commons License (Attribution 4.0 International, as described at https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Michaud, Ani
Leda, Marcin
Swider, Zachary T.
Kim, Songeun
He, Jiaye
Landino, Jennifer
Valley, Jenna R.
Huisken, Jan
Goryachev, Andrew B.
von Dassow, George
Bement, William M.
A versatile cortical pattern-forming circuit based on Rho, F-actin, Ect2, and RGA-3/4
title A versatile cortical pattern-forming circuit based on Rho, F-actin, Ect2, and RGA-3/4
title_full A versatile cortical pattern-forming circuit based on Rho, F-actin, Ect2, and RGA-3/4
title_fullStr A versatile cortical pattern-forming circuit based on Rho, F-actin, Ect2, and RGA-3/4
title_full_unstemmed A versatile cortical pattern-forming circuit based on Rho, F-actin, Ect2, and RGA-3/4
title_short A versatile cortical pattern-forming circuit based on Rho, F-actin, Ect2, and RGA-3/4
title_sort versatile cortical pattern-forming circuit based on rho, f-actin, ect2, and rga-3/4
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9206115/
https://www.ncbi.nlm.nih.gov/pubmed/35708547
http://dx.doi.org/10.1083/jcb.202203017
work_keys_str_mv AT michaudani aversatilecorticalpatternformingcircuitbasedonrhofactinect2andrga34
AT ledamarcin aversatilecorticalpatternformingcircuitbasedonrhofactinect2andrga34
AT swiderzacharyt aversatilecorticalpatternformingcircuitbasedonrhofactinect2andrga34
AT kimsongeun aversatilecorticalpatternformingcircuitbasedonrhofactinect2andrga34
AT hejiaye aversatilecorticalpatternformingcircuitbasedonrhofactinect2andrga34
AT landinojennifer aversatilecorticalpatternformingcircuitbasedonrhofactinect2andrga34
AT valleyjennar aversatilecorticalpatternformingcircuitbasedonrhofactinect2andrga34
AT huiskenjan aversatilecorticalpatternformingcircuitbasedonrhofactinect2andrga34
AT goryachevandrewb aversatilecorticalpatternformingcircuitbasedonrhofactinect2andrga34
AT vondassowgeorge aversatilecorticalpatternformingcircuitbasedonrhofactinect2andrga34
AT bementwilliamm aversatilecorticalpatternformingcircuitbasedonrhofactinect2andrga34
AT michaudani versatilecorticalpatternformingcircuitbasedonrhofactinect2andrga34
AT ledamarcin versatilecorticalpatternformingcircuitbasedonrhofactinect2andrga34
AT swiderzacharyt versatilecorticalpatternformingcircuitbasedonrhofactinect2andrga34
AT kimsongeun versatilecorticalpatternformingcircuitbasedonrhofactinect2andrga34
AT hejiaye versatilecorticalpatternformingcircuitbasedonrhofactinect2andrga34
AT landinojennifer versatilecorticalpatternformingcircuitbasedonrhofactinect2andrga34
AT valleyjennar versatilecorticalpatternformingcircuitbasedonrhofactinect2andrga34
AT huiskenjan versatilecorticalpatternformingcircuitbasedonrhofactinect2andrga34
AT goryachevandrewb versatilecorticalpatternformingcircuitbasedonrhofactinect2andrga34
AT vondassowgeorge versatilecorticalpatternformingcircuitbasedonrhofactinect2andrga34
AT bementwilliamm versatilecorticalpatternformingcircuitbasedonrhofactinect2andrga34