Cargando…
Neuromorphic object localization using resistive memories and ultrasonic transducers
Real-world sensory-processing applications require compact, low-latency, and low-power computing systems. Enabled by their in-memory event-driven computing abilities, hybrid memristive-Complementary Metal-Oxide Semiconductor neuromorphic architectures provide an ideal hardware substrate for such tas...
Autores principales: | Moro, Filippo, Hardy, Emmanuel, Fain, Bruno, Dalgaty, Thomas, Clémençon, Paul, De Prà, Alessio, Esmanhotto, Eduardo, Castellani, Niccolò, Blard, François, Gardien, François, Mesquida, Thomas, Rummens, François, Esseni, David, Casas, Jérôme, Indiveri, Giacomo, Payvand, Melika, Vianello, Elisa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9206646/ https://www.ncbi.nlm.nih.gov/pubmed/35717413 http://dx.doi.org/10.1038/s41467-022-31157-y |
Ejemplares similares
-
Self-organization of an inhomogeneous memristive hardware for sequence learning
por: Payvand, Melika, et al.
Publicado: (2022) -
Author Correction: Self-organization of an inhomogeneous memristive hardware for sequence learning
por: Payvand, Melika, et al.
Publicado: (2022) -
Bringing uncertainty quantification to the extreme-edge with memristor-based Bayesian neural networks
por: Bonnet, Djohan, et al.
Publicado: (2023) -
Reconfigurable halide perovskite nanocrystal memristors for neuromorphic computing
por: John, Rohit Abraham, et al.
Publicado: (2022) -
Frontiers in Neuromorphic Engineering
por: Indiveri, Giacomo, et al.
Publicado: (2011)