Cargando…
REFLACX, a dataset of reports and eye-tracking data for localization of abnormalities in chest x-rays
Deep learning has shown recent success in classifying anomalies in chest x-rays, but datasets are still small compared to natural image datasets. Supervision of abnormality localization has been shown to improve trained models, partially compensating for dataset sizes. However, explicitly labeling t...
Autores principales: | Bigolin Lanfredi, Ricardo, Zhang, Mingyuan, Auffermann, William F., Chan, Jessica, Duong, Phuong-Anh T., Srikumar, Vivek, Drew, Trafton, Schroeder, Joyce D., Tasdizen, Tolga |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9206650/ https://www.ncbi.nlm.nih.gov/pubmed/35717401 http://dx.doi.org/10.1038/s41597-022-01441-z |
Ejemplares similares
-
Localization supervision of chest x-ray classifiers using label-specific eye-tracking annotation
por: Bigolin Lanfredi, Ricardo, et al.
Publicado: (2023) -
Prediction of Obstructive Lung Disease from Chest Radiographs via Deep Learning Trained on Pulmonary Function Data
por: Schroeder, Joyce D, et al.
Publicado: (2021) -
VinDr-CXR: An open dataset of chest X-rays with radiologist’s annotations
por: Nguyen, Ha Q., et al.
Publicado: (2022) -
BRAX, Brazilian labeled chest x-ray dataset
por: Reis, Eduardo P., et al.
Publicado: (2022) -
Creation and validation of a chest X-ray dataset with eye-tracking and report dictation for AI development
por: Karargyris, Alexandros, et al.
Publicado: (2021)