Cargando…

Biochemical characterization of Soxhlet-extracted pulp oil of Canarium schweinfurthii Engl. fruit in Nigeria

Characterization and further development of underutilized/underexploited indigenous tropical seed oils are essential to supplement both nutritional and industrial needs of an ever-increasing African (and global) population. Before now and to our best knowledge, the previous research involved Canariu...

Descripción completa

Detalles Bibliográficos
Autores principales: Omeje, Kingsley O., Ezema, Benjamin O., Ozioko, Juliet N., Omeje, Henry C., Ossai, Emmanuel C., Eze, Sabinus O. O., Okpala, Charles Odilichukwu R., Korzeniowska, Małgorzata
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9206677/
https://www.ncbi.nlm.nih.gov/pubmed/35717414
http://dx.doi.org/10.1038/s41598-022-14381-w
Descripción
Sumario:Characterization and further development of underutilized/underexploited indigenous tropical seed oils are essential to supplement both nutritional and industrial needs of an ever-increasing African (and global) population. Before now and to our best knowledge, the previous research involved Canarium schweinfurthii Engl. fruit specific to Nigeria appear to have been more on the evaluation of seed, pulp, and essential oils (from the seed), but much less on the pulp oil. To supplement existing information, this current work has aimed to biochemically characterize the Soxhlet-extracted pulp oil of C. schweinfurthii fruit gathered from a community situated in the South-east of Nigeria. Specifically, the biochemical characterization comprised the determinations of proximate compositions, lipid peroxidation, fatty acid profile, as well as carotenoids, sterols, and tocopherols. Processing the fruit sample to pulp oil involved, among others, oven-drying, and grinding, prior to the Soxhlet extraction. Results of proximate components of C. schweinfurthii pulp oil showed the following trend: crude fat content (~ 49.32%) > carbohydrates (~ 37.93%) > moisture content (~ 8.62%) > ash content (~ 3.74%) > crude protein content (~ 0.39%) values. The lipid peroxidation attributes comprised acid (~ 23.60 mg KOH/g), peroxide (~ 33.91 mEq. O(2)/kg), iodine (~ 58.3 g/100 g), and saponification (~ 138.21 mg KOH/g) values. In addition to the free (~ 13.8%), saturated (~ 9.74%), and unsaturated (~ 90.26%) fatty acids, a total of fifteen (15) fatty acid methyl esters (FAMEs) spectral peaks were found, from caprylic acid (C8:0) to lignoceric acid (C24:0). Total tocopherol concentration amounted to ~ 73 mg/100 g, which comprised α, β, γ-tocopherol, and δ-tocotrienol, with fair concentrations of carotenoids and sterols. Overall, the C. schweinfurthii pulp oil—biochemically competitive with a high concentration of unsaturated fatty acid, tocopherol, and sterol, suggests strong industrial promise.