Cargando…
Accurate emotion recognition using Bayesian model based EEG sources as dynamic graph convolutional neural network nodes
Due to the effect of emotions on interactions, interpretations, and decisions, automatic detection and analysis of human emotions based on EEG signals has an important role in the treatment of psychiatric diseases. However, the low spatial resolution of EEG recorders poses a challenge. In order to o...
Autores principales: | Asadzadeh, Shiva, Yousefi Rezaii, Tohid, Beheshti, Soosan, Meshgini, Saeed |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9206685/ https://www.ncbi.nlm.nih.gov/pubmed/35717542 http://dx.doi.org/10.1038/s41598-022-14217-7 |
Ejemplares similares
-
Developing an efficient deep neural network for automatic detection of COVID-19 using chest X-ray images
por: Sheykhivand, Sobhan, et al.
Publicado: (2021) -
CR-GCN: Channel-Relationships-Based Graph Convolutional Network for EEG Emotion Recognition
por: Jia, Jingjing, et al.
Publicado: (2022) -
A medium‐weight deep convolutional neural network‐based approach for onset epileptic seizures classification in EEG signals
por: Nemati, Nazanin, et al.
Publicado: (2022) -
Automatic Liver Tumor Segmentation from CT Images Using Graph Convolutional Network
por: Khoshkhabar, Maryam, et al.
Publicado: (2023) -
Fusion Graph Representation of EEG for Emotion Recognition
por: Li, Menghang, et al.
Publicado: (2023)