Cargando…
Stroke recovery phenotyping through network trajectory approaches and graph neural networks
Stroke is a leading cause of neurological injury characterized by impairments in multiple neurological domains including cognition, language, sensory and motor functions. Clinical recovery in these domains is tracked using a wide range of measures that may be continuous, ordinal, interval or categor...
Autores principales: | Krishnagopal, Sanjukta, Lohse, Keith, Braun, Robynne |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9206968/ https://www.ncbi.nlm.nih.gov/pubmed/35717640 http://dx.doi.org/10.1186/s40708-022-00160-w |
Ejemplares similares
-
Identifying and predicting Parkinson’s disease subtypes through trajectory clustering via bipartite networks
por: Krishnagopal, Sanjukta, et al.
Publicado: (2020) -
The collective vs individual nature of mountaineering: a network and simplicial approach
por: Krishnagopal, Sanjukta
Publicado: (2022) -
Introduction to graph neural networks
por: Liu, Zhiyuan, et al.
Publicado: (2020) -
Defense against membership inference attack in graph neural networks through graph perturbation
por: Wang, Kai, et al.
Publicado: (2022) -
Identifying the neural network for neuromodulation in epilepsy through connectomics and graphs
por: Vetkas, Artur, et al.
Publicado: (2022)