Cargando…

LAPTM4B‐35 promotes cancer cell migration via stimulating integrin beta1 recycling and focal adhesion dynamics

Metastasis is the main cause of cancer patients' death despite tremendous efforts invested in developing the related molecular mechanisms. During cancer cell migration, cells undergo dynamic regulation of filopodia, focal adhesion, and endosome trafficking. Cdc42 is imperative for maintaining c...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Minxia, Yan, Ruyu, Wang, Junjie, Yao, Zhihong, Fan, Xinyu, Zhou, Kecheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9207373/
https://www.ncbi.nlm.nih.gov/pubmed/35381120
http://dx.doi.org/10.1111/cas.15362
Descripción
Sumario:Metastasis is the main cause of cancer patients' death despite tremendous efforts invested in developing the related molecular mechanisms. During cancer cell migration, cells undergo dynamic regulation of filopodia, focal adhesion, and endosome trafficking. Cdc42 is imperative for maintaining cell morphology and filopodia, regulating cell movement. Integrin beta1 activates on the endosome, the majority of which distributes itself on the plasma membrane, indicating that endocytic trafficking is essential for this activity. In cancers, high expression of lysosome‐associated protein transmembrane 4B (LAPTM4B) is associated with poor prognosis. LAPTM4B‐35 has been reported as displaying plasma membrane distribution and being associated with cancer cell migration. However, the detailed mechanism of its isoform‐specific distribution and whether it relates to cell migration remain unknown. Here, we first report and quantify the filopodia localization of LAPTM4B‐35: mechanically, that specific interaction with Cdc42 promoted its localization to the filopodia. Furthermore, our data show that LAPTM4B‐35 stabilized filopodia and regulated integrin beta1 recycling via interaction and cotrafficking on the endosome. In our zebrafish xenograft model, LAPTM4B‐35 stimulated the formation and dynamics of focal adhesion, further promoting cancer cell dissemination, whereas in skin cancer patients, LAPTM4B level correlated with poor prognosis. In short, this study establishes an insight into the mechanism of LAPTM4B‐35 filopodia distribution, as well as into its biological effects and its clinical significance, providing a novel target for cancer therapeutics development.