Cargando…

PUFchain 2.0: Hardware-Assisted Robust Blockchain for Sustainable Simultaneous Device and Data Security in Smart Healthcare

This article presents the first-ever hardware-assisted blockchain for simultaneously handling device and data security in smart healthcare. This article presents the hardware security primitive physical unclonable functions (PUF) and blockchain technology together as PUFchain 2.0 with a two-level au...

Descripción completa

Detalles Bibliográficos
Autores principales: Bathalapalli, Venkata K. V. V., Mohanty, Saraju P., Kougianos, Elias, Baniya, Babu K., Rout, Bibhudutta
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Nature Singapore 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9207438/
https://www.ncbi.nlm.nih.gov/pubmed/35755326
http://dx.doi.org/10.1007/s42979-022-01238-2
Descripción
Sumario:This article presents the first-ever hardware-assisted blockchain for simultaneously handling device and data security in smart healthcare. This article presents the hardware security primitive physical unclonable functions (PUF) and blockchain technology together as PUFchain 2.0 with a two-level authentication mechanism. The proposed PUFchain 2.0 security primitive presents a scalable approach by allowing Internet of Medical Things (IoMT) devices to connect and obtain PUF keys from the edge server with an embedded PUF module instead of connecting a PUF module to each device. The PUF key, once assigned to a particular media access control (MAC) address by the miner, will be unique for that MAC address and cannot be assigned to other devices. PUFs are developed based on internal micro-manufacturing process variations during chip fabrication. This property of PUFs is integrated with blockchain by including the PUF key of the IoMT into blockchain for authentication. The robustness of the proposed Proof of PUF-Enabled authentication consensus mechanism in PUFchain 2.0 has been substantiated through test bed evaluation. Arbiter PUFs have been used for the experimental validation of PUFchain 2.0. From the obtained 200 PUF keys, 75% are reliable and the Hamming distance of the PUF module is 48%. Obtained database outputs along with other metrics have been presented for validating the potential of PUFchain 2.0 in smart healthcare.