Cargando…
Anomaly Detection for Internet of Things Time Series Data Using Generative Adversarial Networks With Attention Mechanism in Smart Agriculture
More recently, smart agriculture has received widespread attention, which is a deep combination of modern agriculture and the Internet of Things (IoT) technology. To achieve the aim of scientific cultivation and precise control, the agricultural environments are monitored in real time by using vario...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9207449/ https://www.ncbi.nlm.nih.gov/pubmed/35734254 http://dx.doi.org/10.3389/fpls.2022.890563 |
_version_ | 1784729534232264704 |
---|---|
author | Cheng, Weijun Ma, Tengfei Wang, Xiaoting Wang, Gang |
author_facet | Cheng, Weijun Ma, Tengfei Wang, Xiaoting Wang, Gang |
author_sort | Cheng, Weijun |
collection | PubMed |
description | More recently, smart agriculture has received widespread attention, which is a deep combination of modern agriculture and the Internet of Things (IoT) technology. To achieve the aim of scientific cultivation and precise control, the agricultural environments are monitored in real time by using various types of sensors. As a result, smart agricultural IoT generated a large amount of multidimensional time series data. However, due to the limitation of applied scenarios, smart agricultural IoT often suffers from data loss and misrepresentation. Moreover, some intelligent decision-makings for agricultural management also require the detailed analysis of data. To address the above problems, this article proposes a new anomaly detection model based on generative adversarial networks (GAN), which can process the multidimensional time series data generated by smart agricultural IoT. GAN is a deep learning model to learn the distribution patterns of normal data and capture the temporal dependence of time series and the potential correlations between features through learning. For the problem of generator inversion, an encoder–decoder structure incorporating the attention mechanism is designed to improve the performance of the model in learning normal data. In addition, we also present a new reconstruction error calculation method that measures the error in terms of both point-wise difference and curve similarity to improve the detection effect. Finally, based on three smart agriculture-related datasets, experimental results show that our proposed model can accurately achieve anomaly detection. The experimental precision, recall, and F1 score exceeded the counterpart models by reaching 0.9351, 0.9625, and 0.9482, respectively. |
format | Online Article Text |
id | pubmed-9207449 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-92074492022-06-21 Anomaly Detection for Internet of Things Time Series Data Using Generative Adversarial Networks With Attention Mechanism in Smart Agriculture Cheng, Weijun Ma, Tengfei Wang, Xiaoting Wang, Gang Front Plant Sci Plant Science More recently, smart agriculture has received widespread attention, which is a deep combination of modern agriculture and the Internet of Things (IoT) technology. To achieve the aim of scientific cultivation and precise control, the agricultural environments are monitored in real time by using various types of sensors. As a result, smart agricultural IoT generated a large amount of multidimensional time series data. However, due to the limitation of applied scenarios, smart agricultural IoT often suffers from data loss and misrepresentation. Moreover, some intelligent decision-makings for agricultural management also require the detailed analysis of data. To address the above problems, this article proposes a new anomaly detection model based on generative adversarial networks (GAN), which can process the multidimensional time series data generated by smart agricultural IoT. GAN is a deep learning model to learn the distribution patterns of normal data and capture the temporal dependence of time series and the potential correlations between features through learning. For the problem of generator inversion, an encoder–decoder structure incorporating the attention mechanism is designed to improve the performance of the model in learning normal data. In addition, we also present a new reconstruction error calculation method that measures the error in terms of both point-wise difference and curve similarity to improve the detection effect. Finally, based on three smart agriculture-related datasets, experimental results show that our proposed model can accurately achieve anomaly detection. The experimental precision, recall, and F1 score exceeded the counterpart models by reaching 0.9351, 0.9625, and 0.9482, respectively. Frontiers Media S.A. 2022-06-06 /pmc/articles/PMC9207449/ /pubmed/35734254 http://dx.doi.org/10.3389/fpls.2022.890563 Text en Copyright © 2022 Cheng, Ma, Wang and Wang. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Plant Science Cheng, Weijun Ma, Tengfei Wang, Xiaoting Wang, Gang Anomaly Detection for Internet of Things Time Series Data Using Generative Adversarial Networks With Attention Mechanism in Smart Agriculture |
title | Anomaly Detection for Internet of Things Time Series Data Using Generative Adversarial Networks With Attention Mechanism in Smart Agriculture |
title_full | Anomaly Detection for Internet of Things Time Series Data Using Generative Adversarial Networks With Attention Mechanism in Smart Agriculture |
title_fullStr | Anomaly Detection for Internet of Things Time Series Data Using Generative Adversarial Networks With Attention Mechanism in Smart Agriculture |
title_full_unstemmed | Anomaly Detection for Internet of Things Time Series Data Using Generative Adversarial Networks With Attention Mechanism in Smart Agriculture |
title_short | Anomaly Detection for Internet of Things Time Series Data Using Generative Adversarial Networks With Attention Mechanism in Smart Agriculture |
title_sort | anomaly detection for internet of things time series data using generative adversarial networks with attention mechanism in smart agriculture |
topic | Plant Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9207449/ https://www.ncbi.nlm.nih.gov/pubmed/35734254 http://dx.doi.org/10.3389/fpls.2022.890563 |
work_keys_str_mv | AT chengweijun anomalydetectionforinternetofthingstimeseriesdatausinggenerativeadversarialnetworkswithattentionmechanisminsmartagriculture AT matengfei anomalydetectionforinternetofthingstimeseriesdatausinggenerativeadversarialnetworkswithattentionmechanisminsmartagriculture AT wangxiaoting anomalydetectionforinternetofthingstimeseriesdatausinggenerativeadversarialnetworkswithattentionmechanisminsmartagriculture AT wanggang anomalydetectionforinternetofthingstimeseriesdatausinggenerativeadversarialnetworkswithattentionmechanisminsmartagriculture |