Cargando…
Protocol for live cell image segmentation to profile cellular morphodynamics using MARS-Net
Quantitative studies of cellular morphodynamics rely on accurate cell segmentation in live cell images. However, fluorescence and phase contrast imaging hinder accurate edge localization. To address this challenge, we developed MARS-Net, a deep learning model integrating ImageNet-pretrained VGG19 en...
Autores principales: | Jang, Junbong, Hallinan, Caleb, Lee, Kwonmoo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9207580/ https://www.ncbi.nlm.nih.gov/pubmed/35733606 http://dx.doi.org/10.1016/j.xpro.2022.101469 |
Ejemplares similares
-
A deep learning-based segmentation pipeline for profiling cellular morphodynamics using multiple types of live cell microscopy
por: Jang, Junbong, et al.
Publicado: (2021) -
Emerging machine learning approaches to phenotyping cellular motility and morphodynamics
por: Choi, Hee June, et al.
Publicado: (2021) -
Screening adequacy of unstained thyroid fine needle aspiration samples using a deep learning-based classifier
por: Jang, Junbong, et al.
Publicado: (2023) -
Author Correction: Screening adequacy of unstained thyroid fine needle aspiration samples using a deep learning-based classifier
por: Jang, Junbong, et al.
Publicado: (2023) -
Profiling cellular morphodynamics by spatiotemporal spectrum decomposition
por: Ma, Xiao, et al.
Publicado: (2018)