Cargando…
Lactiplantibacillus plantarum P9 improved gut microbial metabolites and alleviated inflammatory response in pesticide exposure cohorts
Multiple pesticide residue accumulations increase the probability of chronic metabolic diseases in humans. Thus, we applied multi-omics techniques to reveal how the gut microbiome responded to pesticide exposure. Then, we explored how probiotic Lactiplantibacillus plantarum P9 (P9) consumption impac...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9207661/ https://www.ncbi.nlm.nih.gov/pubmed/35733791 http://dx.doi.org/10.1016/j.isci.2022.104472 |
Sumario: | Multiple pesticide residue accumulations increase the probability of chronic metabolic diseases in humans. Thus, we applied multi-omics techniques to reveal how the gut microbiome responded to pesticide exposure. Then, we explored how probiotic Lactiplantibacillus plantarum P9 (P9) consumption impacted the gut microbiota and immune factors after high pesticide exposure. Multi-omics results indicated frequent exposure to pesticides did not alter the composition of the intestinal microbiota, but it did increase the abundance of Lipopolysaccharide in the gut, which might contribute to chronic inflammation. Supplementation with P9 maintained the homeostasis of the gut microbiota and reduced the abundance of pathogens in the high pesticide-exposed subjects. By detecting metabolites, we observed uridine and 5-oxoproline concentrations increased significantly after P9 consumption. Furthermore, P9 alleviated immune factors disorder and promoted pesticide residue excretion. Our findings provide new insights into the application of probiotics for pesticide detoxification, and suggest probiotics as daily supplements for pesticide exposure prevention. |
---|