Cargando…
AlphaFold2 and CryoEM: Revisiting CryoEM modeling in near-atomic resolution density maps
With the advent of new artificial intelligence and machine learning algorithms, predictive modeling can, in some cases, produce structures on par with experimental methods. The combination of predictive modeling and experimental structure determination by electron cryomicroscopy (cryoEM) offers a ta...
Autores principales: | Hryc, Corey F., Baker, Matthew L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9207676/ https://www.ncbi.nlm.nih.gov/pubmed/35733789 http://dx.doi.org/10.1016/j.isci.2022.104496 |
Ejemplares similares
-
Beyond the Backbone: The Next Generation of Pathwalking Utilities for Model Building in CryoEM Density Maps
por: Hryc, Corey F., et al.
Publicado: (2022) -
CryoEM structure and Alphafold molecular modelling of a novel molluscan hemocyanin
por: Pasqualetto, Gaia, et al.
Publicado: (2023) -
Measurement of Atom Resolvability in CryoEM Maps with
Q-scores
por: Pintilie, Grigore, et al.
Publicado: (2020) -
Time-resolved cryoEM using Spotiton
por: Dandey, Venkata P., et al.
Publicado: (2020) -
Studying bacterial chemosensory array with CryoEM
por: Qin, Zhuan, et al.
Publicado: (2021)