Cargando…
Sensitivity of Air Pollution Exposure and Disease Burden to Emission Changes in China Using Machine Learning Emulation
Machine learning models can emulate chemical transport models, reducing computational costs and enabling more experimentation. We developed emulators to predict annual−mean fine particulate matter (PM(2.5)) and ozone (O(3)) concentrations and their associated chronic health impacts from changes in f...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9207901/ https://www.ncbi.nlm.nih.gov/pubmed/35765412 http://dx.doi.org/10.1029/2021GH000570 |
_version_ | 1784729626424115200 |
---|---|
author | Conibear, Luke Reddington, Carly L. Silver, Ben J. Chen, Ying Knote, Christoph Arnold, Stephen R. Spracklen, Dominick V. |
author_facet | Conibear, Luke Reddington, Carly L. Silver, Ben J. Chen, Ying Knote, Christoph Arnold, Stephen R. Spracklen, Dominick V. |
author_sort | Conibear, Luke |
collection | PubMed |
description | Machine learning models can emulate chemical transport models, reducing computational costs and enabling more experimentation. We developed emulators to predict annual−mean fine particulate matter (PM(2.5)) and ozone (O(3)) concentrations and their associated chronic health impacts from changes in five major emission sectors (residential, industrial, land transport, agriculture, and power generation) in China. The emulators predicted 99.9% of the variance in PM(2.5) and O(3) concentrations. We used these emulators to estimate how emission reductions can attain air quality targets. In 2015, we estimate that PM(2.5) exposure was 47.4 μg m(−3) and O(3) exposure was 43.8 ppb, associated with 2,189,700 (95% uncertainty interval, 95UI: 1,948,000–2,427,300) premature deaths per year, primarily from PM(2.5) exposure (98%). PM(2.5) exposure and the associated disease burden were most sensitive to industry and residential emissions. We explore the sensitivity of exposure and health to different combinations of emission reductions. The National Air Quality Target (35 μg m(−3)) for PM(2.5) concentrations can be attained nationally with emission reductions of 72% in industrial, 57% in residential, 36% in land transport, 35% in agricultural, and 33% in power generation emissions. We show that complete removal of emissions from these five sectors does not enable the attainment of the WHO Annual Guideline (5 μg m(−3)) due to remaining air pollution from other sources. Our work provides the first assessment of how air pollution exposure and disease burden in China varies as emissions change across these five sectors and highlights the value of emulators in air quality research. |
format | Online Article Text |
id | pubmed-9207901 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-92079012022-06-27 Sensitivity of Air Pollution Exposure and Disease Burden to Emission Changes in China Using Machine Learning Emulation Conibear, Luke Reddington, Carly L. Silver, Ben J. Chen, Ying Knote, Christoph Arnold, Stephen R. Spracklen, Dominick V. Geohealth Research Article Machine learning models can emulate chemical transport models, reducing computational costs and enabling more experimentation. We developed emulators to predict annual−mean fine particulate matter (PM(2.5)) and ozone (O(3)) concentrations and their associated chronic health impacts from changes in five major emission sectors (residential, industrial, land transport, agriculture, and power generation) in China. The emulators predicted 99.9% of the variance in PM(2.5) and O(3) concentrations. We used these emulators to estimate how emission reductions can attain air quality targets. In 2015, we estimate that PM(2.5) exposure was 47.4 μg m(−3) and O(3) exposure was 43.8 ppb, associated with 2,189,700 (95% uncertainty interval, 95UI: 1,948,000–2,427,300) premature deaths per year, primarily from PM(2.5) exposure (98%). PM(2.5) exposure and the associated disease burden were most sensitive to industry and residential emissions. We explore the sensitivity of exposure and health to different combinations of emission reductions. The National Air Quality Target (35 μg m(−3)) for PM(2.5) concentrations can be attained nationally with emission reductions of 72% in industrial, 57% in residential, 36% in land transport, 35% in agricultural, and 33% in power generation emissions. We show that complete removal of emissions from these five sectors does not enable the attainment of the WHO Annual Guideline (5 μg m(−3)) due to remaining air pollution from other sources. Our work provides the first assessment of how air pollution exposure and disease burden in China varies as emissions change across these five sectors and highlights the value of emulators in air quality research. John Wiley and Sons Inc. 2022-06-01 /pmc/articles/PMC9207901/ /pubmed/35765412 http://dx.doi.org/10.1029/2021GH000570 Text en © 2022 The Authors. GeoHealth published by Wiley Periodicals LLC on behalf of American Geophysical Union. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Conibear, Luke Reddington, Carly L. Silver, Ben J. Chen, Ying Knote, Christoph Arnold, Stephen R. Spracklen, Dominick V. Sensitivity of Air Pollution Exposure and Disease Burden to Emission Changes in China Using Machine Learning Emulation |
title | Sensitivity of Air Pollution Exposure and Disease Burden to Emission Changes in China Using Machine Learning Emulation |
title_full | Sensitivity of Air Pollution Exposure and Disease Burden to Emission Changes in China Using Machine Learning Emulation |
title_fullStr | Sensitivity of Air Pollution Exposure and Disease Burden to Emission Changes in China Using Machine Learning Emulation |
title_full_unstemmed | Sensitivity of Air Pollution Exposure and Disease Burden to Emission Changes in China Using Machine Learning Emulation |
title_short | Sensitivity of Air Pollution Exposure and Disease Burden to Emission Changes in China Using Machine Learning Emulation |
title_sort | sensitivity of air pollution exposure and disease burden to emission changes in china using machine learning emulation |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9207901/ https://www.ncbi.nlm.nih.gov/pubmed/35765412 http://dx.doi.org/10.1029/2021GH000570 |
work_keys_str_mv | AT conibearluke sensitivityofairpollutionexposureanddiseaseburdentoemissionchangesinchinausingmachinelearningemulation AT reddingtoncarlyl sensitivityofairpollutionexposureanddiseaseburdentoemissionchangesinchinausingmachinelearningemulation AT silverbenj sensitivityofairpollutionexposureanddiseaseburdentoemissionchangesinchinausingmachinelearningemulation AT chenying sensitivityofairpollutionexposureanddiseaseburdentoemissionchangesinchinausingmachinelearningemulation AT knotechristoph sensitivityofairpollutionexposureanddiseaseburdentoemissionchangesinchinausingmachinelearningemulation AT arnoldstephenr sensitivityofairpollutionexposureanddiseaseburdentoemissionchangesinchinausingmachinelearningemulation AT spracklendominickv sensitivityofairpollutionexposureanddiseaseburdentoemissionchangesinchinausingmachinelearningemulation |