Cargando…
NeuMapper: A scalable computational framework for multiscale exploration of the brain’s dynamical organization
For better translational outcomes, researchers and clinicians alike demand novel tools to distill complex neuroimaging data into simple yet behaviorally relevant representations at the single-participant level. Recently, the Mapper approach from topological data analysis (TDA) has been successfully...
Autores principales: | Geniesse, Caleb, Chowdhury, Samir, Saggar, Manish |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MIT Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9207992/ https://www.ncbi.nlm.nih.gov/pubmed/35733428 http://dx.doi.org/10.1162/netn_a_00229 |
Ejemplares similares
-
Deconstructing the Mapper algorithm to extract richer topological and temporal features from functional neuroimaging data
por: Haşegan, Daniel, et al.
Publicado: (2023) -
Generating dynamical neuroimaging spatiotemporal representations (DyNeuSR) using topological data analysis
por: Geniesse, Caleb, et al.
Publicado: (2019) -
Temporal Mapper: Transition networks in simulated and real neural dynamics
por: Zhang, Mengsen, et al.
Publicado: (2023) -
PASCAR: a multiscale framework to explore the design space of constitutive and inducible CAR T cells
por: Rajakaruna, Harshana, et al.
Publicado: (2023) -
BatMeth: improved mapper for bisulfite sequencing reads on DNA methylation
por: Lim, Jing-Quan, et al.
Publicado: (2012)