Cargando…

On clustering for cell-phenotyping in multiplex immunohistochemistry (mIHC) and multiplexed ion beam imaging (MIBI) data

OBJECTIVE: Multiplex immunohistochemistry (mIHC) and multiplexed ion beam imaging (MIBI) images are usually phenotyped using a manual thresholding process. The thresholding is prone to biases, especially when examining multiple images with high cellularity. RESULTS: Unsupervised cell-phenotyping met...

Descripción completa

Detalles Bibliográficos
Autores principales: Seal, Souvik, Wrobel, Julia, Johnson, Amber M., Nemenoff, Raphael A., Schenk, Erin L., Bitler, Benjamin G., Jordan, Kimberly R., Ghosh, Debashis
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9208090/
https://www.ncbi.nlm.nih.gov/pubmed/35725622
http://dx.doi.org/10.1186/s13104-022-06097-x
_version_ 1784729666530050048
author Seal, Souvik
Wrobel, Julia
Johnson, Amber M.
Nemenoff, Raphael A.
Schenk, Erin L.
Bitler, Benjamin G.
Jordan, Kimberly R.
Ghosh, Debashis
author_facet Seal, Souvik
Wrobel, Julia
Johnson, Amber M.
Nemenoff, Raphael A.
Schenk, Erin L.
Bitler, Benjamin G.
Jordan, Kimberly R.
Ghosh, Debashis
author_sort Seal, Souvik
collection PubMed
description OBJECTIVE: Multiplex immunohistochemistry (mIHC) and multiplexed ion beam imaging (MIBI) images are usually phenotyped using a manual thresholding process. The thresholding is prone to biases, especially when examining multiple images with high cellularity. RESULTS: Unsupervised cell-phenotyping methods including PhenoGraph, flowMeans, and SamSPECTRAL, primarily used in flow cytometry data, often perform poorly or need elaborate tuning to perform well in the context of mIHC and MIBI data. We show that, instead, semi-supervised cell clustering using Random Forests, linear and quadratic discriminant analysis are superior. We test the performance of the methods on two mIHC datasets from the University of Colorado School of Medicine and a publicly available MIBI dataset. Each dataset contains a bunch of highly complex images. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13104-022-06097-x.
format Online
Article
Text
id pubmed-9208090
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-92080902022-06-21 On clustering for cell-phenotyping in multiplex immunohistochemistry (mIHC) and multiplexed ion beam imaging (MIBI) data Seal, Souvik Wrobel, Julia Johnson, Amber M. Nemenoff, Raphael A. Schenk, Erin L. Bitler, Benjamin G. Jordan, Kimberly R. Ghosh, Debashis BMC Res Notes Research Note OBJECTIVE: Multiplex immunohistochemistry (mIHC) and multiplexed ion beam imaging (MIBI) images are usually phenotyped using a manual thresholding process. The thresholding is prone to biases, especially when examining multiple images with high cellularity. RESULTS: Unsupervised cell-phenotyping methods including PhenoGraph, flowMeans, and SamSPECTRAL, primarily used in flow cytometry data, often perform poorly or need elaborate tuning to perform well in the context of mIHC and MIBI data. We show that, instead, semi-supervised cell clustering using Random Forests, linear and quadratic discriminant analysis are superior. We test the performance of the methods on two mIHC datasets from the University of Colorado School of Medicine and a publicly available MIBI dataset. Each dataset contains a bunch of highly complex images. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13104-022-06097-x. BioMed Central 2022-06-20 /pmc/articles/PMC9208090/ /pubmed/35725622 http://dx.doi.org/10.1186/s13104-022-06097-x Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
spellingShingle Research Note
Seal, Souvik
Wrobel, Julia
Johnson, Amber M.
Nemenoff, Raphael A.
Schenk, Erin L.
Bitler, Benjamin G.
Jordan, Kimberly R.
Ghosh, Debashis
On clustering for cell-phenotyping in multiplex immunohistochemistry (mIHC) and multiplexed ion beam imaging (MIBI) data
title On clustering for cell-phenotyping in multiplex immunohistochemistry (mIHC) and multiplexed ion beam imaging (MIBI) data
title_full On clustering for cell-phenotyping in multiplex immunohistochemistry (mIHC) and multiplexed ion beam imaging (MIBI) data
title_fullStr On clustering for cell-phenotyping in multiplex immunohistochemistry (mIHC) and multiplexed ion beam imaging (MIBI) data
title_full_unstemmed On clustering for cell-phenotyping in multiplex immunohistochemistry (mIHC) and multiplexed ion beam imaging (MIBI) data
title_short On clustering for cell-phenotyping in multiplex immunohistochemistry (mIHC) and multiplexed ion beam imaging (MIBI) data
title_sort on clustering for cell-phenotyping in multiplex immunohistochemistry (mihc) and multiplexed ion beam imaging (mibi) data
topic Research Note
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9208090/
https://www.ncbi.nlm.nih.gov/pubmed/35725622
http://dx.doi.org/10.1186/s13104-022-06097-x
work_keys_str_mv AT sealsouvik onclusteringforcellphenotypinginmultipleximmunohistochemistrymihcandmultiplexedionbeamimagingmibidata
AT wrobeljulia onclusteringforcellphenotypinginmultipleximmunohistochemistrymihcandmultiplexedionbeamimagingmibidata
AT johnsonamberm onclusteringforcellphenotypinginmultipleximmunohistochemistrymihcandmultiplexedionbeamimagingmibidata
AT nemenoffraphaela onclusteringforcellphenotypinginmultipleximmunohistochemistrymihcandmultiplexedionbeamimagingmibidata
AT schenkerinl onclusteringforcellphenotypinginmultipleximmunohistochemistrymihcandmultiplexedionbeamimagingmibidata
AT bitlerbenjaming onclusteringforcellphenotypinginmultipleximmunohistochemistrymihcandmultiplexedionbeamimagingmibidata
AT jordankimberlyr onclusteringforcellphenotypinginmultipleximmunohistochemistrymihcandmultiplexedionbeamimagingmibidata
AT ghoshdebashis onclusteringforcellphenotypinginmultipleximmunohistochemistrymihcandmultiplexedionbeamimagingmibidata