Cargando…
Towards a guideline for evaluation metrics in medical image segmentation
In the last decade, research on artificial intelligence has seen rapid growth with deep learning models, especially in the field of medical image segmentation. Various studies demonstrated that these models have powerful prediction capabilities and achieved similar results as clinicians. However, re...
Autores principales: | Müller, Dominik, Soto-Rey, Iñaki, Kramer, Frank |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9208116/ https://www.ncbi.nlm.nih.gov/pubmed/35725483 http://dx.doi.org/10.1186/s13104-022-06096-y |
Ejemplares similares
-
MISM: A Medical Image Segmentation Metric for Evaluation of Weak Labeled Data
por: Hartmann, Dennis, et al.
Publicado: (2023) -
Robust chest CT image segmentation of COVID-19 lung infection based on limited data
por: Müller, Dominik, et al.
Publicado: (2021) -
MIScnn: a framework for medical image segmentation with convolutional neural networks and deep learning
por: Müller, Dominik, et al.
Publicado: (2021) -
DrNote: An open medical annotation service
por: Frei, Johann, et al.
Publicado: (2022) -
Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool
por: Taha, Abdel Aziz, et al.
Publicado: (2015)