Cargando…

Proteins and proteases of Prader–Willi syndrome: a comprehensive review and perspectives

Prader–Willi Syndrome (PWS) is a rare complex genetic disease that is associated with pathological disorders that include endocrine disruption, developmental, neurological, and physical problems as well as intellectual, and behavioral dysfunction. In early stage, PWS is characterized by respiratory...

Descripción completa

Detalles Bibliográficos
Autores principales: Basak, Sanjukta, Basak, Ajoy
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Portland Press Ltd. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9208313/
https://www.ncbi.nlm.nih.gov/pubmed/35621394
http://dx.doi.org/10.1042/BSR20220610
Descripción
Sumario:Prader–Willi Syndrome (PWS) is a rare complex genetic disease that is associated with pathological disorders that include endocrine disruption, developmental, neurological, and physical problems as well as intellectual, and behavioral dysfunction. In early stage, PWS is characterized by respiratory distress, hypotonia, and poor sucking ability, causing feeding concern and poor weight gain. Additional features of the disease evolve over time. These include hyperphagia, obesity, developmental, cognitive delay, skin picking, high pain threshold, short stature, growth hormone deficiency, hypogonadism, strabismus, scoliosis, joint laxity, or hip dysplasia. The disease is associated with a shortened life expectancy. There is no cure for PWS, although interventions are available for symptoms management. PWS is caused by genetic defects in chromosome 15q11.2-q13, and categorized into three groups, namely Paternal deletion, Maternal uniparental disomy, and Imprinting defect. PWS is confirmed through genetic testing and DNA-methylation analysis. Studies revealed that at least two key proteins namely MAGEL-2 and NECDIN along with two proteases PCSK1 and PCSK2 are linked to PWS. Herein, we summarize our current understanding and knowledge about the role of these proteins and enzymes in various biological processes associated with PWS. The review also describes how loss and/or impairment of functional activity of these macromolecules can lead to hormonal disbalance by promoting degradation of secretory granules and via inhibition of proteolytic maturation of precursor-proteins. The present review will draw attention of researchers, scientists, and academicians engaged in PWS study and will help to identify potential targets and molecular pathways for PWS intervention and treatment.