Cargando…

Circular RNA circ_0061140 accelerates hypoxia-induced glycolysis, migration, and invasion in lung adenocarcinoma through the microRNA-653/hexokinase 2 (HK2) axis

Circular RNA (circRNA) is considered to be an essential regulator of multiple human malignancies. However, the role and molecular mechanism of circ_0061140 in lung adenocarcinoma ((LUAD) remain elusive. The levels of circ_0061140, microRNA (miR)-653 and hexokinase 2 (HK2) were examined by RT-qPCR. D...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Shaobin, Zhang, Hao, Xia, Lixia, Lan, Fen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9208531/
https://www.ncbi.nlm.nih.gov/pubmed/35379058
http://dx.doi.org/10.1080/21655979.2021.2000743
Descripción
Sumario:Circular RNA (circRNA) is considered to be an essential regulator of multiple human malignancies. However, the role and molecular mechanism of circ_0061140 in lung adenocarcinoma ((LUAD) remain elusive. The levels of circ_0061140, microRNA (miR)-653 and hexokinase 2 (HK2) were examined by RT-qPCR. Downstream targets of circ_0061140 were predicted by circinteractome website and verified by luciferase reporter and RIP assays. HK2 protein level was assessed via Western blotting. The migratory and invasive abilities of LUAD cells were assessed via wound healing and transwell assays. It was uncovered that circ_0061140 level was elevated in LUAD samples, and the high level of circ_0061140 was related to poor survival rate of LUAD patients. Circ_0061140 deletion inhibited glycolysis, migration and invasion of hypoxia-treated LUAD cells. Moreover, circ_0061140 could modulate HK2 level by absorbing miR-653. Furthermore, miR-653 silence or HK2 addition neutralized the effects of circ_0061140 knockdown on LUAD progression under hypoxia. This study elaborated that circ_0061140 accelerated hypoxia-triggered glycolysis, migration and invasion in LUAD cells via downregulating miR-653 and increasing HK2 expression.