Cargando…
Cardiovascular Risk Assessment Using Artificial Intelligence-Enabled Event Adjudication and Hematologic Predictors
Researchers routinely evaluate novel biomarkers for incorporation into clinical risk models, weighing tradeoffs between cost, availability, and ease of deployment. For risk assessment in population health initiatives, ideal inputs would be those already available for most patients. We hypothesized t...
Autores principales: | Truslow, James G., Goto, Shinichi, Homilius, Max, Mow, Christopher, Higgins, John M., MacRae, Calum A., Deo, Rahul C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9208816/ https://www.ncbi.nlm.nih.gov/pubmed/35477255 http://dx.doi.org/10.1161/CIRCOUTCOMES.121.008007 |
Ejemplares similares
-
Importance of external validation and subgroup analysis of artificial intelligence in the detection of low ejection fraction from electrocardiograms
por: Yagi, Ryuichiro, et al.
Publicado: (2022) -
Artificial intelligence-enabled fully automated detection of cardiac amyloidosis using electrocardiograms and echocardiograms
por: Goto, Shinichi, et al.
Publicado: (2021) -
Multinational Federated Learning Approach to Train ECG and Echocardiogram Models for Hypertrophic Cardiomyopathy Detection
por: Goto, Shinichi, et al.
Publicado: (2022) -
Single Cell Biology: Exploring Somatic Cell Behaviors, Competition and Selection in Chronic Disease
por: Zhu, Wandi, et al.
Publicado: (2022) -
Human cardiomyopathy mutations induce myocyte hyperplasia and activate hypertrophic pathways during cardiogenesis in zebrafish
por: Becker, Jason R., et al.
Publicado: (2011)