Cargando…
Using graph convolutional neural networks to learn a representation for glycans
As the only nonlinear and the most diverse biological sequence, glycans offer substantial challenges for computational biology. These carbohydrates participate in nearly all biological processes—from protein folding to viral cell entry—yet are still not well understood. There are few computational m...
Autores principales: | Burkholz, Rebekka, Quackenbush, John, Bojar, Daniel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9208909/ https://www.ncbi.nlm.nih.gov/pubmed/34133929 http://dx.doi.org/10.1016/j.celrep.2021.109251 |
Ejemplares similares
-
Glycowork: A Python package for glycan data science and machine learning
por: Thomès, Luc, et al.
Publicado: (2021) -
Biologically informed NeuralODEs for genome-wide regulatory dynamics
por: Hossain, Intekhab, et al.
Publicado: (2023) -
Multipath Cross Graph Convolution for Knowledge Representation Learning
por: Tian, Luogeng, et al.
Publicado: (2021) -
Graph Neural Network for representation learning of lung cancer
por: Aftab, Rukhma, et al.
Publicado: (2023) -
LUNAR :Drug Screening for Novel Coronavirus Based on Representation Learning Graph Convolutional Network
Publicado: (2021)