Cargando…

The Effect of Mild Renal Dysfunction on the Assessment of Plasma Amino Acid Concentration and Insulin Resistance in Patients with Type 2 Diabetes Mellitus

BACKGROUND: An increase in the levels of branched-chain amino acids (BCAAs) and certain aromatic amino acids, such as alanine, in plasma is correlated with insulin resistance (IR) in type 2 diabetes mellitus (T2DM). T2DM is a leading risk factor for chronic kidney disease. Meanwhile, renal dysfuncti...

Descripción completa

Detalles Bibliográficos
Autor principal: Ikeda, Hideki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9208954/
https://www.ncbi.nlm.nih.gov/pubmed/35734236
http://dx.doi.org/10.1155/2022/2048300
Descripción
Sumario:BACKGROUND: An increase in the levels of branched-chain amino acids (BCAAs) and certain aromatic amino acids, such as alanine, in plasma is correlated with insulin resistance (IR) in type 2 diabetes mellitus (T2DM). T2DM is a leading risk factor for chronic kidney disease. Meanwhile, renal dysfunction causes changes in plasma amino acid levels. To date, no study has examined how mild renal dysfunction and IR interact with plasma amino acid levels. This study examines the effects of IR and renal dysfunction on plasma amino acid concentrations in T2DM. METHODS: Data were collected from healthy male participants (controls) and male patients with T2DM between May 2018 and February 2022. Blood samples were collected after overnight fasting. IR and renal function were evaluated using the homeostasis model assessment of IR (HOMA-IR) and serum cystatin C (CysC), respectively. RESULTS: A total of 49 and 93 participants were included in the control and T2DM groups, respectively. In the T2DM group, eight amino acids (alanine, glutamic acid, glutamine, glycine, isoleucine, leucine, tyrosine, and valine) and total BCAA showed a significant correlation with HOMA-IR (p < 0.01), whereas six amino acids (γ-aminobutyric acid, citrulline, cysteine, glycine, methionine, and valine) and total BCAA showed a significant correlation with 1/CysC (p < 0.02). However, only alanine, glutamic acid, and each BCAA showed significant differences between the control group and the IR T2DM subgroup. Increases in the BCAA levels with T2DM were canceled by renal dysfunction (CysC ≥ 0.93) in patients with intermediate IR. CONCLUSION: To use plasma BCAA concentration as a marker of IR, renal function must be considered, even in mild renal dysfunction. Increased alanine and glutamic acid levels indicate IR, regardless of mild renal dysfunction.