Cargando…
Scene Classification in the Environmental Art Design by Using the Lightweight Deep Learning Model under the Background of Big Data
On the basis of scene visual understanding technology, the research aims to further improve the classification efficiency and classification accuracy of art design scenes. The lightweight deep learning (DL) model based on big data is used as the main method to achieve real-time detection and recogni...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9208967/ https://www.ncbi.nlm.nih.gov/pubmed/35733573 http://dx.doi.org/10.1155/2022/9066648 |
Sumario: | On the basis of scene visual understanding technology, the research aims to further improve the classification efficiency and classification accuracy of art design scenes. The lightweight deep learning (DL) model based on big data is used as the main method to achieve real-time detection and recognition of multiple targets and classification of the multilabel scene. This research introduces the related foundations of the DL network and the lightweight object detection involved. The data for a multilabel scene classifier are constructed and the design of the convolutional neural network (CNN) model is described. On public datasets, the effectiveness of the lightweight object detection algorithm is verified to ensure its feasibility in the classification of actual scenes. The simulation results indicate that compared with the YOLOv3-Tiny model, the improved IRDA-YOLOv3 model reduces the number of parameters by 56.2%, the amount of computation by 46.3%, and the forward computation time of the network by 0.2 ms. It means that the IRDA-YOLOv3 network obtained after the improvement can realize the lightweight of the network. In the scene classification of complex traffic roads, the classification model of the multilabel scene can predict all kinds of semantic information of a single image and the classification accuracy for the four scenes is more than 90%. In summary, the discussed classification method based on the lightweight DL model is suitable for complex practical scenes. The constructed lightweight network improves the representational ability of the network and has certain research value for scene classification problems. |
---|