Cargando…

325 Blood pressure and the kidney cortex transcriptome response to high sodium diet challenge in female nonhuman primates

OBJECTIVES/GOALS: The goal of this study was to understand the impact of a high sodium diet on gene networks in the kidney that correlate with blood pressure in female primates, and translating findings to women. METHODS/STUDY POPULATION: Sodium-naïve female baboons (n=7) were fed a low-sodium (LS)...

Descripción completa

Detalles Bibliográficos
Autores principales: Riojas, Angelica M., Spradling-Reeves, Kimberly D., Shade, Robert E., Puppala, Sobha R., Christensen, Clinton L., Birnbaum, Shifra, Glenn, Jeremy P., Li, Cun, Shaltout, Hossam, Hall-Ursone, Shannan, Cox, Laura A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cambridge University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9209290/
http://dx.doi.org/10.1017/cts.2022.182
_version_ 1784729919407783936
author Riojas, Angelica M.
Spradling-Reeves, Kimberly D.
Shade, Robert E.
Puppala, Sobha R.
Christensen, Clinton L.
Birnbaum, Shifra
Glenn, Jeremy P.
Li, Cun
Shaltout, Hossam
Hall-Ursone, Shannan
Cox, Laura A.
author_facet Riojas, Angelica M.
Spradling-Reeves, Kimberly D.
Shade, Robert E.
Puppala, Sobha R.
Christensen, Clinton L.
Birnbaum, Shifra
Glenn, Jeremy P.
Li, Cun
Shaltout, Hossam
Hall-Ursone, Shannan
Cox, Laura A.
author_sort Riojas, Angelica M.
collection PubMed
description OBJECTIVES/GOALS: The goal of this study was to understand the impact of a high sodium diet on gene networks in the kidney that correlate with blood pressure in female primates, and translating findings to women. METHODS/STUDY POPULATION: Sodium-naïve female baboons (n=7) were fed a low-sodium (LS) diet for 6 weeks followed by a high sodium (HS) diet for 6 weeks. Sodium intake, serum 17 beta-estradiol, and ultrasound-guided kidney biopsies for RNA-Seq were collected at the end of each diet. Blood pressure was continuously measured for 64-hour periods throughout the study by implantable telemetry devices. Weighted gene coexpression network analysis was performed on RNA-Seq data to identify transcripts correlated with blood pressure on each diet. Network analysis was performed on transcripts highly correlated with BP, and in silico findings were validated by immunohistochemistry of kidney tissues. RESULTS/ANTICIPATED RESULTS: On the LS diet, Na+ intake and serum 17 beta-estradiol concentration correlated with BP. Cell type composition of renal biopsies was consistent among all animals for both diets. Kidney transcriptomes differed by diet; analysis by unbiased weighted gene co-expression network analysis revealed modules of genes correlated with BP on the HS diet. Network analysis of module genes showed causal networks linking hormone receptors, proliferation and differentiation, methylation, hypoxia, insulin and lipid regulation, and inflammation as regulators underlying variation in BP on the HS diet. Our results show variation in BP correlated with novel kidney gene networks with master regulators PPARG and MYC in female baboons on a HS diet. DISCUSSION/SIGNIFICANCE: Previous studies in primates to identify molecular networks dysregulated by HS diet focused on males. Current clinical guidelines do not offer sex-specific treatment plans for sodium sensitive hypertension. This study leveraged variation in BP as a first step to identify correlated kidney regulatory gene networks in female primates after a HS diet.
format Online
Article
Text
id pubmed-9209290
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Cambridge University Press
record_format MEDLINE/PubMed
spelling pubmed-92092902022-07-01 325 Blood pressure and the kidney cortex transcriptome response to high sodium diet challenge in female nonhuman primates Riojas, Angelica M. Spradling-Reeves, Kimberly D. Shade, Robert E. Puppala, Sobha R. Christensen, Clinton L. Birnbaum, Shifra Glenn, Jeremy P. Li, Cun Shaltout, Hossam Hall-Ursone, Shannan Cox, Laura A. J Clin Transl Sci Valued Approaches OBJECTIVES/GOALS: The goal of this study was to understand the impact of a high sodium diet on gene networks in the kidney that correlate with blood pressure in female primates, and translating findings to women. METHODS/STUDY POPULATION: Sodium-naïve female baboons (n=7) were fed a low-sodium (LS) diet for 6 weeks followed by a high sodium (HS) diet for 6 weeks. Sodium intake, serum 17 beta-estradiol, and ultrasound-guided kidney biopsies for RNA-Seq were collected at the end of each diet. Blood pressure was continuously measured for 64-hour periods throughout the study by implantable telemetry devices. Weighted gene coexpression network analysis was performed on RNA-Seq data to identify transcripts correlated with blood pressure on each diet. Network analysis was performed on transcripts highly correlated with BP, and in silico findings were validated by immunohistochemistry of kidney tissues. RESULTS/ANTICIPATED RESULTS: On the LS diet, Na+ intake and serum 17 beta-estradiol concentration correlated with BP. Cell type composition of renal biopsies was consistent among all animals for both diets. Kidney transcriptomes differed by diet; analysis by unbiased weighted gene co-expression network analysis revealed modules of genes correlated with BP on the HS diet. Network analysis of module genes showed causal networks linking hormone receptors, proliferation and differentiation, methylation, hypoxia, insulin and lipid regulation, and inflammation as regulators underlying variation in BP on the HS diet. Our results show variation in BP correlated with novel kidney gene networks with master regulators PPARG and MYC in female baboons on a HS diet. DISCUSSION/SIGNIFICANCE: Previous studies in primates to identify molecular networks dysregulated by HS diet focused on males. Current clinical guidelines do not offer sex-specific treatment plans for sodium sensitive hypertension. This study leveraged variation in BP as a first step to identify correlated kidney regulatory gene networks in female primates after a HS diet. Cambridge University Press 2022-04-19 /pmc/articles/PMC9209290/ http://dx.doi.org/10.1017/cts.2022.182 Text en © The Association for Clinical and Translational Science 2022 https://creativecommons.org/licenses/by-nc-nd/4.0/This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (https://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
spellingShingle Valued Approaches
Riojas, Angelica M.
Spradling-Reeves, Kimberly D.
Shade, Robert E.
Puppala, Sobha R.
Christensen, Clinton L.
Birnbaum, Shifra
Glenn, Jeremy P.
Li, Cun
Shaltout, Hossam
Hall-Ursone, Shannan
Cox, Laura A.
325 Blood pressure and the kidney cortex transcriptome response to high sodium diet challenge in female nonhuman primates
title 325 Blood pressure and the kidney cortex transcriptome response to high sodium diet challenge in female nonhuman primates
title_full 325 Blood pressure and the kidney cortex transcriptome response to high sodium diet challenge in female nonhuman primates
title_fullStr 325 Blood pressure and the kidney cortex transcriptome response to high sodium diet challenge in female nonhuman primates
title_full_unstemmed 325 Blood pressure and the kidney cortex transcriptome response to high sodium diet challenge in female nonhuman primates
title_short 325 Blood pressure and the kidney cortex transcriptome response to high sodium diet challenge in female nonhuman primates
title_sort 325 blood pressure and the kidney cortex transcriptome response to high sodium diet challenge in female nonhuman primates
topic Valued Approaches
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9209290/
http://dx.doi.org/10.1017/cts.2022.182
work_keys_str_mv AT riojasangelicam 325bloodpressureandthekidneycortextranscriptomeresponsetohighsodiumdietchallengeinfemalenonhumanprimates
AT spradlingreeveskimberlyd 325bloodpressureandthekidneycortextranscriptomeresponsetohighsodiumdietchallengeinfemalenonhumanprimates
AT shaderoberte 325bloodpressureandthekidneycortextranscriptomeresponsetohighsodiumdietchallengeinfemalenonhumanprimates
AT puppalasobhar 325bloodpressureandthekidneycortextranscriptomeresponsetohighsodiumdietchallengeinfemalenonhumanprimates
AT christensenclintonl 325bloodpressureandthekidneycortextranscriptomeresponsetohighsodiumdietchallengeinfemalenonhumanprimates
AT birnbaumshifra 325bloodpressureandthekidneycortextranscriptomeresponsetohighsodiumdietchallengeinfemalenonhumanprimates
AT glennjeremyp 325bloodpressureandthekidneycortextranscriptomeresponsetohighsodiumdietchallengeinfemalenonhumanprimates
AT licun 325bloodpressureandthekidneycortextranscriptomeresponsetohighsodiumdietchallengeinfemalenonhumanprimates
AT shaltouthossam 325bloodpressureandthekidneycortextranscriptomeresponsetohighsodiumdietchallengeinfemalenonhumanprimates
AT hallursoneshannan 325bloodpressureandthekidneycortextranscriptomeresponsetohighsodiumdietchallengeinfemalenonhumanprimates
AT coxlauraa 325bloodpressureandthekidneycortextranscriptomeresponsetohighsodiumdietchallengeinfemalenonhumanprimates