Cargando…

Broadband high-Q multimode silicon concentric racetrack resonators for widely tunable Raman lasers

Multimode silicon resonators with ultralow propagation losses for ultrahigh quality (Q) factors have been attracting attention recently. However, conventional multimode silicon resonators only have high Q factors at certain wavelengths because the Q factors are reduced at wavelengths where fundament...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Yaojing, Zhong, Keyi, Zhou, Xuetong, Tsang, Hon Ki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9209424/
https://www.ncbi.nlm.nih.gov/pubmed/35725566
http://dx.doi.org/10.1038/s41467-022-31244-0
Descripción
Sumario:Multimode silicon resonators with ultralow propagation losses for ultrahigh quality (Q) factors have been attracting attention recently. However, conventional multimode silicon resonators only have high Q factors at certain wavelengths because the Q factors are reduced at wavelengths where fundamental modes and higher-order modes are both near resonances. Here, by implementing a broadband pulley directional coupler and concentric racetracks, we present a broadband high-Q multimode silicon resonator with average loaded Q factors of 1.4 × 10(6) over a wavelength range of 440 nm (1240–1680 nm). The mutual coupling between the two multimode racetracks can lead to two supermodes that mitigate the reduction in Q factors caused by the mode coupling of the higher-order modes. Based on the broadband high-Q multimode resonator, we experimentally demonstrated a broadly tunable Raman silicon laser with over 516 nm wavelength tuning range (1325–1841 nm), a threshold power of (0.4 ± 0.1) mW and a slope efficiency of (8.5 ± 1.5) % at 25 V reverse bias.