Cargando…

Multimodal deep learning for Alzheimer’s disease dementia assessment

Worldwide, there are nearly 10 million new cases of dementia annually, of which Alzheimer’s disease (AD) is the most common. New measures are needed to improve the diagnosis of individuals with cognitive impairment due to various etiologies. Here, we report a deep learning framework that accomplishe...

Descripción completa

Detalles Bibliográficos
Autores principales: Qiu, Shangran, Miller, Matthew I., Joshi, Prajakta S., Lee, Joyce C., Xue, Chonghua, Ni, Yunruo, Wang, Yuwei, De Anda-Duran, Ileana, Hwang, Phillip H., Cramer, Justin A., Dwyer, Brigid C., Hao, Honglin, Kaku, Michelle C., Kedar, Sachin, Lee, Peter H., Mian, Asim Z., Murman, Daniel L., O’Shea, Sarah, Paul, Aaron B., Saint-Hilaire, Marie-Helene, Alton Sartor, E., Saxena, Aneeta R., Shih, Ludy C., Small, Juan E., Smith, Maximilian J., Swaminathan, Arun, Takahashi, Courtney E., Taraschenko, Olga, You, Hui, Yuan, Jing, Zhou, Yan, Zhu, Shuhan, Alosco, Michael L., Mez, Jesse, Stein, Thor D., Poston, Kathleen L., Au, Rhoda, Kolachalama, Vijaya B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9209452/
https://www.ncbi.nlm.nih.gov/pubmed/35725739
http://dx.doi.org/10.1038/s41467-022-31037-5
_version_ 1784729958414811136
author Qiu, Shangran
Miller, Matthew I.
Joshi, Prajakta S.
Lee, Joyce C.
Xue, Chonghua
Ni, Yunruo
Wang, Yuwei
De Anda-Duran, Ileana
Hwang, Phillip H.
Cramer, Justin A.
Dwyer, Brigid C.
Hao, Honglin
Kaku, Michelle C.
Kedar, Sachin
Lee, Peter H.
Mian, Asim Z.
Murman, Daniel L.
O’Shea, Sarah
Paul, Aaron B.
Saint-Hilaire, Marie-Helene
Alton Sartor, E.
Saxena, Aneeta R.
Shih, Ludy C.
Small, Juan E.
Smith, Maximilian J.
Swaminathan, Arun
Takahashi, Courtney E.
Taraschenko, Olga
You, Hui
Yuan, Jing
Zhou, Yan
Zhu, Shuhan
Alosco, Michael L.
Mez, Jesse
Stein, Thor D.
Poston, Kathleen L.
Au, Rhoda
Kolachalama, Vijaya B.
author_facet Qiu, Shangran
Miller, Matthew I.
Joshi, Prajakta S.
Lee, Joyce C.
Xue, Chonghua
Ni, Yunruo
Wang, Yuwei
De Anda-Duran, Ileana
Hwang, Phillip H.
Cramer, Justin A.
Dwyer, Brigid C.
Hao, Honglin
Kaku, Michelle C.
Kedar, Sachin
Lee, Peter H.
Mian, Asim Z.
Murman, Daniel L.
O’Shea, Sarah
Paul, Aaron B.
Saint-Hilaire, Marie-Helene
Alton Sartor, E.
Saxena, Aneeta R.
Shih, Ludy C.
Small, Juan E.
Smith, Maximilian J.
Swaminathan, Arun
Takahashi, Courtney E.
Taraschenko, Olga
You, Hui
Yuan, Jing
Zhou, Yan
Zhu, Shuhan
Alosco, Michael L.
Mez, Jesse
Stein, Thor D.
Poston, Kathleen L.
Au, Rhoda
Kolachalama, Vijaya B.
author_sort Qiu, Shangran
collection PubMed
description Worldwide, there are nearly 10 million new cases of dementia annually, of which Alzheimer’s disease (AD) is the most common. New measures are needed to improve the diagnosis of individuals with cognitive impairment due to various etiologies. Here, we report a deep learning framework that accomplishes multiple diagnostic steps in successive fashion to identify persons with normal cognition (NC), mild cognitive impairment (MCI), AD, and non-AD dementias (nADD). We demonstrate a range of models capable of accepting flexible combinations of routinely collected clinical information, including demographics, medical history, neuropsychological testing, neuroimaging, and functional assessments. We then show that these frameworks compare favorably with the diagnostic accuracy of practicing neurologists and neuroradiologists. Lastly, we apply interpretability methods in computer vision to show that disease-specific patterns detected by our models track distinct patterns of degenerative changes throughout the brain and correspond closely with the presence of neuropathological lesions on autopsy. Our work demonstrates methodologies for validating computational predictions with established standards of medical diagnosis.
format Online
Article
Text
id pubmed-9209452
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-92094522022-06-22 Multimodal deep learning for Alzheimer’s disease dementia assessment Qiu, Shangran Miller, Matthew I. Joshi, Prajakta S. Lee, Joyce C. Xue, Chonghua Ni, Yunruo Wang, Yuwei De Anda-Duran, Ileana Hwang, Phillip H. Cramer, Justin A. Dwyer, Brigid C. Hao, Honglin Kaku, Michelle C. Kedar, Sachin Lee, Peter H. Mian, Asim Z. Murman, Daniel L. O’Shea, Sarah Paul, Aaron B. Saint-Hilaire, Marie-Helene Alton Sartor, E. Saxena, Aneeta R. Shih, Ludy C. Small, Juan E. Smith, Maximilian J. Swaminathan, Arun Takahashi, Courtney E. Taraschenko, Olga You, Hui Yuan, Jing Zhou, Yan Zhu, Shuhan Alosco, Michael L. Mez, Jesse Stein, Thor D. Poston, Kathleen L. Au, Rhoda Kolachalama, Vijaya B. Nat Commun Article Worldwide, there are nearly 10 million new cases of dementia annually, of which Alzheimer’s disease (AD) is the most common. New measures are needed to improve the diagnosis of individuals with cognitive impairment due to various etiologies. Here, we report a deep learning framework that accomplishes multiple diagnostic steps in successive fashion to identify persons with normal cognition (NC), mild cognitive impairment (MCI), AD, and non-AD dementias (nADD). We demonstrate a range of models capable of accepting flexible combinations of routinely collected clinical information, including demographics, medical history, neuropsychological testing, neuroimaging, and functional assessments. We then show that these frameworks compare favorably with the diagnostic accuracy of practicing neurologists and neuroradiologists. Lastly, we apply interpretability methods in computer vision to show that disease-specific patterns detected by our models track distinct patterns of degenerative changes throughout the brain and correspond closely with the presence of neuropathological lesions on autopsy. Our work demonstrates methodologies for validating computational predictions with established standards of medical diagnosis. Nature Publishing Group UK 2022-06-20 /pmc/articles/PMC9209452/ /pubmed/35725739 http://dx.doi.org/10.1038/s41467-022-31037-5 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Qiu, Shangran
Miller, Matthew I.
Joshi, Prajakta S.
Lee, Joyce C.
Xue, Chonghua
Ni, Yunruo
Wang, Yuwei
De Anda-Duran, Ileana
Hwang, Phillip H.
Cramer, Justin A.
Dwyer, Brigid C.
Hao, Honglin
Kaku, Michelle C.
Kedar, Sachin
Lee, Peter H.
Mian, Asim Z.
Murman, Daniel L.
O’Shea, Sarah
Paul, Aaron B.
Saint-Hilaire, Marie-Helene
Alton Sartor, E.
Saxena, Aneeta R.
Shih, Ludy C.
Small, Juan E.
Smith, Maximilian J.
Swaminathan, Arun
Takahashi, Courtney E.
Taraschenko, Olga
You, Hui
Yuan, Jing
Zhou, Yan
Zhu, Shuhan
Alosco, Michael L.
Mez, Jesse
Stein, Thor D.
Poston, Kathleen L.
Au, Rhoda
Kolachalama, Vijaya B.
Multimodal deep learning for Alzheimer’s disease dementia assessment
title Multimodal deep learning for Alzheimer’s disease dementia assessment
title_full Multimodal deep learning for Alzheimer’s disease dementia assessment
title_fullStr Multimodal deep learning for Alzheimer’s disease dementia assessment
title_full_unstemmed Multimodal deep learning for Alzheimer’s disease dementia assessment
title_short Multimodal deep learning for Alzheimer’s disease dementia assessment
title_sort multimodal deep learning for alzheimer’s disease dementia assessment
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9209452/
https://www.ncbi.nlm.nih.gov/pubmed/35725739
http://dx.doi.org/10.1038/s41467-022-31037-5
work_keys_str_mv AT qiushangran multimodaldeeplearningforalzheimersdiseasedementiaassessment
AT millermatthewi multimodaldeeplearningforalzheimersdiseasedementiaassessment
AT joshiprajaktas multimodaldeeplearningforalzheimersdiseasedementiaassessment
AT leejoycec multimodaldeeplearningforalzheimersdiseasedementiaassessment
AT xuechonghua multimodaldeeplearningforalzheimersdiseasedementiaassessment
AT niyunruo multimodaldeeplearningforalzheimersdiseasedementiaassessment
AT wangyuwei multimodaldeeplearningforalzheimersdiseasedementiaassessment
AT deandaduranileana multimodaldeeplearningforalzheimersdiseasedementiaassessment
AT hwangphilliph multimodaldeeplearningforalzheimersdiseasedementiaassessment
AT cramerjustina multimodaldeeplearningforalzheimersdiseasedementiaassessment
AT dwyerbrigidc multimodaldeeplearningforalzheimersdiseasedementiaassessment
AT haohonglin multimodaldeeplearningforalzheimersdiseasedementiaassessment
AT kakumichellec multimodaldeeplearningforalzheimersdiseasedementiaassessment
AT kedarsachin multimodaldeeplearningforalzheimersdiseasedementiaassessment
AT leepeterh multimodaldeeplearningforalzheimersdiseasedementiaassessment
AT mianasimz multimodaldeeplearningforalzheimersdiseasedementiaassessment
AT murmandaniell multimodaldeeplearningforalzheimersdiseasedementiaassessment
AT osheasarah multimodaldeeplearningforalzheimersdiseasedementiaassessment
AT paulaaronb multimodaldeeplearningforalzheimersdiseasedementiaassessment
AT sainthilairemariehelene multimodaldeeplearningforalzheimersdiseasedementiaassessment
AT altonsartore multimodaldeeplearningforalzheimersdiseasedementiaassessment
AT saxenaaneetar multimodaldeeplearningforalzheimersdiseasedementiaassessment
AT shihludyc multimodaldeeplearningforalzheimersdiseasedementiaassessment
AT smalljuane multimodaldeeplearningforalzheimersdiseasedementiaassessment
AT smithmaximilianj multimodaldeeplearningforalzheimersdiseasedementiaassessment
AT swaminathanarun multimodaldeeplearningforalzheimersdiseasedementiaassessment
AT takahashicourtneye multimodaldeeplearningforalzheimersdiseasedementiaassessment
AT taraschenkoolga multimodaldeeplearningforalzheimersdiseasedementiaassessment
AT youhui multimodaldeeplearningforalzheimersdiseasedementiaassessment
AT yuanjing multimodaldeeplearningforalzheimersdiseasedementiaassessment
AT zhouyan multimodaldeeplearningforalzheimersdiseasedementiaassessment
AT zhushuhan multimodaldeeplearningforalzheimersdiseasedementiaassessment
AT aloscomichaell multimodaldeeplearningforalzheimersdiseasedementiaassessment
AT mezjesse multimodaldeeplearningforalzheimersdiseasedementiaassessment
AT steinthord multimodaldeeplearningforalzheimersdiseasedementiaassessment
AT postonkathleenl multimodaldeeplearningforalzheimersdiseasedementiaassessment
AT aurhoda multimodaldeeplearningforalzheimersdiseasedementiaassessment
AT kolachalamavijayab multimodaldeeplearningforalzheimersdiseasedementiaassessment