Cargando…
Multimodal deep learning for Alzheimer’s disease dementia assessment
Worldwide, there are nearly 10 million new cases of dementia annually, of which Alzheimer’s disease (AD) is the most common. New measures are needed to improve the diagnosis of individuals with cognitive impairment due to various etiologies. Here, we report a deep learning framework that accomplishe...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9209452/ https://www.ncbi.nlm.nih.gov/pubmed/35725739 http://dx.doi.org/10.1038/s41467-022-31037-5 |
_version_ | 1784729958414811136 |
---|---|
author | Qiu, Shangran Miller, Matthew I. Joshi, Prajakta S. Lee, Joyce C. Xue, Chonghua Ni, Yunruo Wang, Yuwei De Anda-Duran, Ileana Hwang, Phillip H. Cramer, Justin A. Dwyer, Brigid C. Hao, Honglin Kaku, Michelle C. Kedar, Sachin Lee, Peter H. Mian, Asim Z. Murman, Daniel L. O’Shea, Sarah Paul, Aaron B. Saint-Hilaire, Marie-Helene Alton Sartor, E. Saxena, Aneeta R. Shih, Ludy C. Small, Juan E. Smith, Maximilian J. Swaminathan, Arun Takahashi, Courtney E. Taraschenko, Olga You, Hui Yuan, Jing Zhou, Yan Zhu, Shuhan Alosco, Michael L. Mez, Jesse Stein, Thor D. Poston, Kathleen L. Au, Rhoda Kolachalama, Vijaya B. |
author_facet | Qiu, Shangran Miller, Matthew I. Joshi, Prajakta S. Lee, Joyce C. Xue, Chonghua Ni, Yunruo Wang, Yuwei De Anda-Duran, Ileana Hwang, Phillip H. Cramer, Justin A. Dwyer, Brigid C. Hao, Honglin Kaku, Michelle C. Kedar, Sachin Lee, Peter H. Mian, Asim Z. Murman, Daniel L. O’Shea, Sarah Paul, Aaron B. Saint-Hilaire, Marie-Helene Alton Sartor, E. Saxena, Aneeta R. Shih, Ludy C. Small, Juan E. Smith, Maximilian J. Swaminathan, Arun Takahashi, Courtney E. Taraschenko, Olga You, Hui Yuan, Jing Zhou, Yan Zhu, Shuhan Alosco, Michael L. Mez, Jesse Stein, Thor D. Poston, Kathleen L. Au, Rhoda Kolachalama, Vijaya B. |
author_sort | Qiu, Shangran |
collection | PubMed |
description | Worldwide, there are nearly 10 million new cases of dementia annually, of which Alzheimer’s disease (AD) is the most common. New measures are needed to improve the diagnosis of individuals with cognitive impairment due to various etiologies. Here, we report a deep learning framework that accomplishes multiple diagnostic steps in successive fashion to identify persons with normal cognition (NC), mild cognitive impairment (MCI), AD, and non-AD dementias (nADD). We demonstrate a range of models capable of accepting flexible combinations of routinely collected clinical information, including demographics, medical history, neuropsychological testing, neuroimaging, and functional assessments. We then show that these frameworks compare favorably with the diagnostic accuracy of practicing neurologists and neuroradiologists. Lastly, we apply interpretability methods in computer vision to show that disease-specific patterns detected by our models track distinct patterns of degenerative changes throughout the brain and correspond closely with the presence of neuropathological lesions on autopsy. Our work demonstrates methodologies for validating computational predictions with established standards of medical diagnosis. |
format | Online Article Text |
id | pubmed-9209452 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-92094522022-06-22 Multimodal deep learning for Alzheimer’s disease dementia assessment Qiu, Shangran Miller, Matthew I. Joshi, Prajakta S. Lee, Joyce C. Xue, Chonghua Ni, Yunruo Wang, Yuwei De Anda-Duran, Ileana Hwang, Phillip H. Cramer, Justin A. Dwyer, Brigid C. Hao, Honglin Kaku, Michelle C. Kedar, Sachin Lee, Peter H. Mian, Asim Z. Murman, Daniel L. O’Shea, Sarah Paul, Aaron B. Saint-Hilaire, Marie-Helene Alton Sartor, E. Saxena, Aneeta R. Shih, Ludy C. Small, Juan E. Smith, Maximilian J. Swaminathan, Arun Takahashi, Courtney E. Taraschenko, Olga You, Hui Yuan, Jing Zhou, Yan Zhu, Shuhan Alosco, Michael L. Mez, Jesse Stein, Thor D. Poston, Kathleen L. Au, Rhoda Kolachalama, Vijaya B. Nat Commun Article Worldwide, there are nearly 10 million new cases of dementia annually, of which Alzheimer’s disease (AD) is the most common. New measures are needed to improve the diagnosis of individuals with cognitive impairment due to various etiologies. Here, we report a deep learning framework that accomplishes multiple diagnostic steps in successive fashion to identify persons with normal cognition (NC), mild cognitive impairment (MCI), AD, and non-AD dementias (nADD). We demonstrate a range of models capable of accepting flexible combinations of routinely collected clinical information, including demographics, medical history, neuropsychological testing, neuroimaging, and functional assessments. We then show that these frameworks compare favorably with the diagnostic accuracy of practicing neurologists and neuroradiologists. Lastly, we apply interpretability methods in computer vision to show that disease-specific patterns detected by our models track distinct patterns of degenerative changes throughout the brain and correspond closely with the presence of neuropathological lesions on autopsy. Our work demonstrates methodologies for validating computational predictions with established standards of medical diagnosis. Nature Publishing Group UK 2022-06-20 /pmc/articles/PMC9209452/ /pubmed/35725739 http://dx.doi.org/10.1038/s41467-022-31037-5 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Qiu, Shangran Miller, Matthew I. Joshi, Prajakta S. Lee, Joyce C. Xue, Chonghua Ni, Yunruo Wang, Yuwei De Anda-Duran, Ileana Hwang, Phillip H. Cramer, Justin A. Dwyer, Brigid C. Hao, Honglin Kaku, Michelle C. Kedar, Sachin Lee, Peter H. Mian, Asim Z. Murman, Daniel L. O’Shea, Sarah Paul, Aaron B. Saint-Hilaire, Marie-Helene Alton Sartor, E. Saxena, Aneeta R. Shih, Ludy C. Small, Juan E. Smith, Maximilian J. Swaminathan, Arun Takahashi, Courtney E. Taraschenko, Olga You, Hui Yuan, Jing Zhou, Yan Zhu, Shuhan Alosco, Michael L. Mez, Jesse Stein, Thor D. Poston, Kathleen L. Au, Rhoda Kolachalama, Vijaya B. Multimodal deep learning for Alzheimer’s disease dementia assessment |
title | Multimodal deep learning for Alzheimer’s disease dementia assessment |
title_full | Multimodal deep learning for Alzheimer’s disease dementia assessment |
title_fullStr | Multimodal deep learning for Alzheimer’s disease dementia assessment |
title_full_unstemmed | Multimodal deep learning for Alzheimer’s disease dementia assessment |
title_short | Multimodal deep learning for Alzheimer’s disease dementia assessment |
title_sort | multimodal deep learning for alzheimer’s disease dementia assessment |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9209452/ https://www.ncbi.nlm.nih.gov/pubmed/35725739 http://dx.doi.org/10.1038/s41467-022-31037-5 |
work_keys_str_mv | AT qiushangran multimodaldeeplearningforalzheimersdiseasedementiaassessment AT millermatthewi multimodaldeeplearningforalzheimersdiseasedementiaassessment AT joshiprajaktas multimodaldeeplearningforalzheimersdiseasedementiaassessment AT leejoycec multimodaldeeplearningforalzheimersdiseasedementiaassessment AT xuechonghua multimodaldeeplearningforalzheimersdiseasedementiaassessment AT niyunruo multimodaldeeplearningforalzheimersdiseasedementiaassessment AT wangyuwei multimodaldeeplearningforalzheimersdiseasedementiaassessment AT deandaduranileana multimodaldeeplearningforalzheimersdiseasedementiaassessment AT hwangphilliph multimodaldeeplearningforalzheimersdiseasedementiaassessment AT cramerjustina multimodaldeeplearningforalzheimersdiseasedementiaassessment AT dwyerbrigidc multimodaldeeplearningforalzheimersdiseasedementiaassessment AT haohonglin multimodaldeeplearningforalzheimersdiseasedementiaassessment AT kakumichellec multimodaldeeplearningforalzheimersdiseasedementiaassessment AT kedarsachin multimodaldeeplearningforalzheimersdiseasedementiaassessment AT leepeterh multimodaldeeplearningforalzheimersdiseasedementiaassessment AT mianasimz multimodaldeeplearningforalzheimersdiseasedementiaassessment AT murmandaniell multimodaldeeplearningforalzheimersdiseasedementiaassessment AT osheasarah multimodaldeeplearningforalzheimersdiseasedementiaassessment AT paulaaronb multimodaldeeplearningforalzheimersdiseasedementiaassessment AT sainthilairemariehelene multimodaldeeplearningforalzheimersdiseasedementiaassessment AT altonsartore multimodaldeeplearningforalzheimersdiseasedementiaassessment AT saxenaaneetar multimodaldeeplearningforalzheimersdiseasedementiaassessment AT shihludyc multimodaldeeplearningforalzheimersdiseasedementiaassessment AT smalljuane multimodaldeeplearningforalzheimersdiseasedementiaassessment AT smithmaximilianj multimodaldeeplearningforalzheimersdiseasedementiaassessment AT swaminathanarun multimodaldeeplearningforalzheimersdiseasedementiaassessment AT takahashicourtneye multimodaldeeplearningforalzheimersdiseasedementiaassessment AT taraschenkoolga multimodaldeeplearningforalzheimersdiseasedementiaassessment AT youhui multimodaldeeplearningforalzheimersdiseasedementiaassessment AT yuanjing multimodaldeeplearningforalzheimersdiseasedementiaassessment AT zhouyan multimodaldeeplearningforalzheimersdiseasedementiaassessment AT zhushuhan multimodaldeeplearningforalzheimersdiseasedementiaassessment AT aloscomichaell multimodaldeeplearningforalzheimersdiseasedementiaassessment AT mezjesse multimodaldeeplearningforalzheimersdiseasedementiaassessment AT steinthord multimodaldeeplearningforalzheimersdiseasedementiaassessment AT postonkathleenl multimodaldeeplearningforalzheimersdiseasedementiaassessment AT aurhoda multimodaldeeplearningforalzheimersdiseasedementiaassessment AT kolachalamavijayab multimodaldeeplearningforalzheimersdiseasedementiaassessment |