Cargando…
A predictive model using the mesoscopic architecture of the living brain to detect Alzheimer’s disease
BACKGROUND: Alzheimer’s disease, the most common cause of dementia, causes a progressive and irreversible deterioration of cognition that can sometimes be difficult to diagnose, leading to suboptimal patient care. METHODS: We developed a predictive model that computes multi-regional statistical morp...
Autores principales: | Inglese, Marianna, Patel, Neva, Linton-Reid, Kristofer, Loreto, Flavia, Win, Zarni, Perry, Richard J., Carswell, Christopher, Grech-Sollars, Matthew, Crum, William R., Lu, Haonan, Malhotra, Paresh A., Aboagye, Eric O. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9209493/ https://www.ncbi.nlm.nih.gov/pubmed/35759330 http://dx.doi.org/10.1038/s43856-022-00133-4 |
Ejemplares similares
-
Visual atrophy rating scales and amyloid PET status in an Alzheimer's disease clinical cohort
por: Loreto, Flavia, et al.
Publicado: (2023) -
Evaluating cognitive profiles of patients undergoing clinical amyloid-PET imaging
por: Loreto, Flavia, et al.
Publicado: (2021) -
Using amyloid PET imaging to diagnose Alzheimer’s disease in patients with multiple sclerosis
por: Kolanko, Magdalena, et al.
Publicado: (2020) -
Reliability of dynamic contrast-enhanced magnetic resonance imaging data in primary brain tumours: a comparison of Tofts and shutter speed models
por: Inglese, Marianna, et al.
Publicado: (2019) -
Monitoring Response to Transarterial Chemoembolization in Hepatocellular Carcinoma Using (18)F-Fluorothymidine PET
por: Sharma, Rohini, et al.
Publicado: (2020)