Cargando…
Development, Validation, and Comparison of Image-Based, Clinical Feature-Based and Fusion Artificial Intelligence Diagnostic Models in Differentiating Benign and Malignant Pulmonary Ground-Glass Nodules
OBJECTIVE: This study aimed to develop effective artificial intelligence (AI) diagnostic models based on CT images of pulmonary nodules only, on descriptional and quantitative clinical or image features, or on a combination of both to differentiate benign and malignant ground-glass nodules (GGNs) to...
Autores principales: | Wang, Xiang, Gao, Man, Xie, Jicai, Deng, Yanfang, Tu, Wenting, Yang, Hua, Liang, Shuang, Xu, Panlong, Zhang, Mingzi, Lu, Yang, Fu, ChiCheng, Li, Qiong, Fan, Li, Liu, Shiyuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9209648/ https://www.ncbi.nlm.nih.gov/pubmed/35747810 http://dx.doi.org/10.3389/fonc.2022.892890 |
Ejemplares similares
-
Baseline whole-lung CT features deriving from deep learning and radiomics: prediction of benign and malignant pulmonary ground-glass nodules
por: Huang, Wenjun, et al.
Publicado: (2023) -
Predicting the invasiveness of lung adenocarcinomas appearing as ground-glass nodule on CT scan using multi-task learning and deep radiomics
por: Wang, Xiang, et al.
Publicado: (2020) -
Pulmonary Benign Ground-Glass Nodules: CT Features and Pathological Findings
por: Li, Wang-Jia, et al.
Publicado: (2021) -
Establishment of a malignancy and benignancy prediction model of sub-centimeter pulmonary ground-glass nodules based on the inflammation-cancer transformation theory
por: Shen, Changxing, et al.
Publicado: (2022) -
Can peritumoral regions increase the efficiency of machine-learning prediction of pathological invasiveness in lung adenocarcinoma manifesting as ground-glass nodules?
por: Wang, Xiang, et al.
Publicado: (2021)