Cargando…
FetalGAN: Automated Segmentation of Fetal Functional Brain MRI Using Deep Generative Adversarial Learning and Multi-Scale 3D U-Net
An important step in the preprocessing of resting state functional magnetic resonance images (rs-fMRI) is the separation of brain from non-brain voxels. Widely used imaging tools such as FSL’s BET2 and AFNI’s 3dSkullStrip accomplish this task effectively in children and adults. In fetal functional b...
Autores principales: | De Asis-Cruz, Josepheen, Krishnamurthy, Dhineshvikram, Jose, Chris, Cook, Kevin M., Limperopoulos, Catherine |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9209698/ https://www.ncbi.nlm.nih.gov/pubmed/35747213 http://dx.doi.org/10.3389/fnins.2022.887634 |
Ejemplares similares
-
Toward a more informative representation of the fetal–neonatal brain connectome using variational autoencoder
por: Kim, Jung-Hoon, et al.
Publicado: (2023) -
Examining the relationship between fetal cortical thickness, gestational age, and maternal psychological distress
por: De Asis-Cruz, Josepheen, et al.
Publicado: (2023) -
Functional Connectivity-Derived Optimal Gestational-Age Cut Points for Fetal Brain Network Maturity
por: De Asis-Cruz, Josepheen, et al.
Publicado: (2021) -
Automatic brain segmentation in preterm infants with post‐hemorrhagic hydrocephalus using 3D Bayesian U‐Net
por: Largent, Axel, et al.
Publicado: (2022) -
Systematic evaluation of head motion on resting‐state functional connectivity MRI in the neonate
por: Kim, Jung‐Hoon, et al.
Publicado: (2022)