Cargando…
Semi-Automatic Prostate Segmentation From Ultrasound Images Using Machine Learning and Principal Curve Based on Interpretable Mathematical Model Expression
Accurate prostate segmentation in transrectal ultrasound (TRUS) is a challenging problem due to the low contrast of TRUS images and the presence of imaging artifacts such as speckle and shadow regions. To address this issue, we propose a semi-automatic model termed Hybrid Segmentation Model (H-SegMo...
Autores principales: | Peng, Tao, Tang, Caiyin, Wu, Yiyun, Cai, Jing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9209717/ https://www.ncbi.nlm.nih.gov/pubmed/35747834 http://dx.doi.org/10.3389/fonc.2022.878104 |
Ejemplares similares
-
CNN-based automatic segmentations and radiomics feature reliability on contrast-enhanced ultrasound images for renal tumors
por: Yang, Yin, et al.
Publicado: (2023) -
A novel approach for automatic segmentation of prostate and its lesion regions on magnetic resonance imaging
por: Ren, Huipeng, et al.
Publicado: (2023) -
Structure boundary-preserving U-Net for prostate ultrasound image segmentation
por: Bi, Hui, et al.
Publicado: (2022) -
Automatic Image Selection Model Based on Machine Learning for Endobronchial Ultrasound Strain Elastography Videos
por: Zhi, Xinxin, et al.
Publicado: (2021) -
Automatic segmentation of nasopharyngeal carcinoma on CT images using efficient UNet‐2.5D ensemble with semi‐supervised pretext task pretraining
por: Domoguen, Jansen Keith L., et al.
Publicado: (2022)