Cargando…
Improved Multi-Stream Convolutional Block Attention Module for sEMG-Based Gesture Recognition
As a key technology for the non-invasive human-machine interface that has received much attention in the industry and academia, surface EMG (sEMG) signals display great potential and advantages in the field of human-machine collaboration. Currently, gesture recognition based on sEMG signals suffers...
Autores principales: | Wang, Shudi, Huang, Li, Jiang, Du, Sun, Ying, Jiang, Guozhang, Li, Jun, Zou, Cejing, Fan, Hanwen, Xie, Yuanmin, Xiong, Hegen, Chen, Baojia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9209772/ https://www.ncbi.nlm.nih.gov/pubmed/35747495 http://dx.doi.org/10.3389/fbioe.2022.909023 |
Ejemplares similares
-
Dynamic Gesture Recognition Using Surface EMG Signals Based on Multi-Stream Residual Network
por: Yang, Zhiwen, et al.
Publicado: (2021) -
Biometric From Surface Electromyogram (sEMG): Feasibility of User Verification and Identification Based on Gesture Recognition
por: He, Jiayuan, et al.
Publicado: (2020) -
Multi-Stream Convolutional Neural Network-Based Wearable, Flexible Bionic Gesture Surface Muscle Feature Extraction and Recognition
por: Liu, Wansu, et al.
Publicado: (2022) -
Deep learning and session-specific rapid recalibration for dynamic hand gesture recognition from EMG
por: Karrenbach, Maxim, et al.
Publicado: (2022) -
Multi-Category Gesture Recognition Modeling Based on sEMG and IMU Signals
por: Jiang, Yujian, et al.
Publicado: (2022)