Cargando…
Plastid RNA editing reduction accompanied with genetic variations in Cymbidium, a genus with diverse lifestyle modes
Recent sequencing efforts have broadly uncovered the evolutionary trajectory of plastid genomes (plastomes) of flowering plants in diverse habitats, yet our knowledge of the evolution of plastid posttranscriptional modifications is limited. In this study, we generated 11 complete plastomes and perfo...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Kunming Institute of Botany, Chinese Academy of Sciences
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9209865/ https://www.ncbi.nlm.nih.gov/pubmed/35769591 http://dx.doi.org/10.1016/j.pld.2021.07.002 |
_version_ | 1784730042635386880 |
---|---|
author | Zhe, Mengqing Zhang, Le Liu, Fang Huang, Yiwei Fan, Weishu Yang, Junbo Zhu, Andan |
author_facet | Zhe, Mengqing Zhang, Le Liu, Fang Huang, Yiwei Fan, Weishu Yang, Junbo Zhu, Andan |
author_sort | Zhe, Mengqing |
collection | PubMed |
description | Recent sequencing efforts have broadly uncovered the evolutionary trajectory of plastid genomes (plastomes) of flowering plants in diverse habitats, yet our knowledge of the evolution of plastid posttranscriptional modifications is limited. In this study, we generated 11 complete plastomes and performed ultra-deep transcriptome sequencing to investigate the co-evolution of plastid RNA editing and genetic variation in Cymbidium, a genus with diverse trophic lifestyles. Genome size and gene content is reduced in terrestrial and green mycoheterotrophic orchids relative to their epiphytic relatives. This could be partly due to extensive losses and pseudogenization of ndh genes for the plastid NADH dehydrogenase-like complex, but independent pseudogenization of ndh genes has also occurred in the epiphyte C. mannii, which was reported to use strong crassulacean acid metabolism photosynthesis. RNA editing sites are abundant but variable in number among Cymbidium plastomes. The nearly twofold variation in editing abundance is mainly due to extensive reduction of ancestral editing sites in ndh transcripts of terrestrial, mycoheterotrophic, and C. mannii plastomes. The co-occurrence of editing reduction and pseudogenization in ndh genes suggests functional constraints on editing machinery may be relaxed, leading to nonrandom loss of ancestral edited sites via reduced editing efficiency. This study represents the first systematic examination of RNA editing evolution linked to plastid genome variation in a single genus. We also propose an explanation for how genomic and posttranscriptional variations might be affected by lifestyle-associated ecological adaptation strategies in Cymbidium. |
format | Online Article Text |
id | pubmed-9209865 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Kunming Institute of Botany, Chinese Academy of Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-92098652022-06-28 Plastid RNA editing reduction accompanied with genetic variations in Cymbidium, a genus with diverse lifestyle modes Zhe, Mengqing Zhang, Le Liu, Fang Huang, Yiwei Fan, Weishu Yang, Junbo Zhu, Andan Plant Divers Research Paper Recent sequencing efforts have broadly uncovered the evolutionary trajectory of plastid genomes (plastomes) of flowering plants in diverse habitats, yet our knowledge of the evolution of plastid posttranscriptional modifications is limited. In this study, we generated 11 complete plastomes and performed ultra-deep transcriptome sequencing to investigate the co-evolution of plastid RNA editing and genetic variation in Cymbidium, a genus with diverse trophic lifestyles. Genome size and gene content is reduced in terrestrial and green mycoheterotrophic orchids relative to their epiphytic relatives. This could be partly due to extensive losses and pseudogenization of ndh genes for the plastid NADH dehydrogenase-like complex, but independent pseudogenization of ndh genes has also occurred in the epiphyte C. mannii, which was reported to use strong crassulacean acid metabolism photosynthesis. RNA editing sites are abundant but variable in number among Cymbidium plastomes. The nearly twofold variation in editing abundance is mainly due to extensive reduction of ancestral editing sites in ndh transcripts of terrestrial, mycoheterotrophic, and C. mannii plastomes. The co-occurrence of editing reduction and pseudogenization in ndh genes suggests functional constraints on editing machinery may be relaxed, leading to nonrandom loss of ancestral edited sites via reduced editing efficiency. This study represents the first systematic examination of RNA editing evolution linked to plastid genome variation in a single genus. We also propose an explanation for how genomic and posttranscriptional variations might be affected by lifestyle-associated ecological adaptation strategies in Cymbidium. Kunming Institute of Botany, Chinese Academy of Sciences 2021-07-12 /pmc/articles/PMC9209865/ /pubmed/35769591 http://dx.doi.org/10.1016/j.pld.2021.07.002 Text en © 2021 Kunming Institute of Botany, Chinese Academy of Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Research Paper Zhe, Mengqing Zhang, Le Liu, Fang Huang, Yiwei Fan, Weishu Yang, Junbo Zhu, Andan Plastid RNA editing reduction accompanied with genetic variations in Cymbidium, a genus with diverse lifestyle modes |
title | Plastid RNA editing reduction accompanied with genetic variations in Cymbidium, a genus with diverse lifestyle modes |
title_full | Plastid RNA editing reduction accompanied with genetic variations in Cymbidium, a genus with diverse lifestyle modes |
title_fullStr | Plastid RNA editing reduction accompanied with genetic variations in Cymbidium, a genus with diverse lifestyle modes |
title_full_unstemmed | Plastid RNA editing reduction accompanied with genetic variations in Cymbidium, a genus with diverse lifestyle modes |
title_short | Plastid RNA editing reduction accompanied with genetic variations in Cymbidium, a genus with diverse lifestyle modes |
title_sort | plastid rna editing reduction accompanied with genetic variations in cymbidium, a genus with diverse lifestyle modes |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9209865/ https://www.ncbi.nlm.nih.gov/pubmed/35769591 http://dx.doi.org/10.1016/j.pld.2021.07.002 |
work_keys_str_mv | AT zhemengqing plastidrnaeditingreductionaccompaniedwithgeneticvariationsincymbidiumagenuswithdiverselifestylemodes AT zhangle plastidrnaeditingreductionaccompaniedwithgeneticvariationsincymbidiumagenuswithdiverselifestylemodes AT liufang plastidrnaeditingreductionaccompaniedwithgeneticvariationsincymbidiumagenuswithdiverselifestylemodes AT huangyiwei plastidrnaeditingreductionaccompaniedwithgeneticvariationsincymbidiumagenuswithdiverselifestylemodes AT fanweishu plastidrnaeditingreductionaccompaniedwithgeneticvariationsincymbidiumagenuswithdiverselifestylemodes AT yangjunbo plastidrnaeditingreductionaccompaniedwithgeneticvariationsincymbidiumagenuswithdiverselifestylemodes AT zhuandan plastidrnaeditingreductionaccompaniedwithgeneticvariationsincymbidiumagenuswithdiverselifestylemodes |