Cargando…
Med-SRNet: GAN-Based Medical Image Super-Resolution via High-Resolution Representation Learning
High-resolution (HR) medical imaging data provide more anatomical details of human body, which facilitates early-stage disease diagnosis. But it is challenging to get clear HR medical images because of the limiting factors, such as imaging systems, imaging environments, and human factors. This work...
Autores principales: | Zhang, Lina, Dai, Haidong, Sang, Yu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9210125/ https://www.ncbi.nlm.nih.gov/pubmed/35747717 http://dx.doi.org/10.1155/2022/1744969 |
Ejemplares similares
-
LRF-SRNet: Large-Scale Super-Resolution Network for Estimating Aircraft Pose on the Airport Surface
por: Yuan, Xinyang, et al.
Publicado: (2023) -
Impact of GAN-based lesion-focused medical image super-resolution on the robustness of radiomic features
por: de Farias, Erick Costa, et al.
Publicado: (2021) -
Super-resolution CT Image Reconstruction Based on Dictionary Learning and Sparse Representation
por: Jiang, Changhui, et al.
Publicado: (2018) -
Spectral Representation via Data-Guided Sparsity for Hyperspectral Image Super-Resolution †
por: Han, Xian-Hua, et al.
Publicado: (2019) -
Kernel Estimation Using Total Variation Guided GAN for Image Super-Resolution
por: Park, Jongeun, et al.
Publicado: (2023)