Cargando…
Restricted maximum-likelihood method for learning latent variance components in gene expression data with known and unknown confounders
Random effects models are popular statistical models for detecting and correcting spurious sample correlations due to hidden confounders in genome-wide gene expression data. In applications where some confounding factors are known, estimating simultaneously the contribution of known and latent varia...
Autores principales: | Malik, Muhammad Ammar, Michoel, Tom |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9210293/ https://www.ncbi.nlm.nih.gov/pubmed/34864982 http://dx.doi.org/10.1093/g3journal/jkab410 |
Ejemplares similares
-
Estimating variances and covariances for multivariate animal models by restricted maximum likelihood
por: Meyer, K
Publicado: (1991) -
A Monte-Carlo algorithm for maximum likelihood estimation of variance components
por: Xu, S, et al.
Publicado: (1996) -
Computation of all eigenvalues of matrices used in restricted maximum likelihood estimation of variance components using sparse matrix techniques
por: Robert, C, et al.
Publicado: (1996) -
Approximate restricted maximum likelihood and approximate prediction error variance of the Mendelian sampling effect
por: Boichard, D, et al.
Publicado: (1992) -
Restricted maximum likelihood to estimate variance components for animal models with several random effects using a derivative-free algorithm
por: Meyer, K
Publicado: (1989)