Cargando…

Bayesian multitrait kernel methods improve multienvironment genome-based prediction

When multitrait data are available, the preferred models are those that are able to account for correlations between phenotypic traits because when the degree of correlation is moderate or large, this increases the genomic prediction accuracy. For this reason, in this article, we explore Bayesian mu...

Descripción completa

Detalles Bibliográficos
Autores principales: Montesinos-López, Osval Antonio, Montesinos-López, José Cricelio, Montesinos-López, Abelardo, Ramírez-Alcaraz, Juan Manuel, Poland, Jesse, Singh, Ravi, Dreisigacker, Susanne, Crespo, Leonardo, Mondal, Sushismita, Govidan, Velu, Juliana, Philomin, Espino, Julio Huerta, Shrestha, Sandesh, Varshney, Rajeev K, Crossa, José
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9210316/
https://www.ncbi.nlm.nih.gov/pubmed/34849802
http://dx.doi.org/10.1093/g3journal/jkab406
_version_ 1784730142432559104
author Montesinos-López, Osval Antonio
Montesinos-López, José Cricelio
Montesinos-López, Abelardo
Ramírez-Alcaraz, Juan Manuel
Poland, Jesse
Singh, Ravi
Dreisigacker, Susanne
Crespo, Leonardo
Mondal, Sushismita
Govidan, Velu
Juliana, Philomin
Espino, Julio Huerta
Shrestha, Sandesh
Varshney, Rajeev K
Crossa, José
author_facet Montesinos-López, Osval Antonio
Montesinos-López, José Cricelio
Montesinos-López, Abelardo
Ramírez-Alcaraz, Juan Manuel
Poland, Jesse
Singh, Ravi
Dreisigacker, Susanne
Crespo, Leonardo
Mondal, Sushismita
Govidan, Velu
Juliana, Philomin
Espino, Julio Huerta
Shrestha, Sandesh
Varshney, Rajeev K
Crossa, José
author_sort Montesinos-López, Osval Antonio
collection PubMed
description When multitrait data are available, the preferred models are those that are able to account for correlations between phenotypic traits because when the degree of correlation is moderate or large, this increases the genomic prediction accuracy. For this reason, in this article, we explore Bayesian multitrait kernel methods for genomic prediction and we illustrate the power of these models with three-real datasets. The kernels under study were the linear, Gaussian, polynomial, and sigmoid kernels; they were compared with the conventional Ridge regression and GBLUP multitrait models. The results show that, in general, the Gaussian kernel method outperformed conventional Bayesian Ridge and GBLUP multitrait linear models by 2.2–17.45% (datasets 1–3) in terms of prediction performance based on the mean square error of prediction. This improvement in terms of prediction performance of the Bayesian multitrait kernel method can be attributed to the fact that the proposed model is able to capture nonlinear patterns more efficiently than linear multitrait models. However, not all kernels perform well in the datasets used for evaluation, which is why more than one kernel should be evaluated to be able to choose the best kernel.
format Online
Article
Text
id pubmed-9210316
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-92103162022-06-21 Bayesian multitrait kernel methods improve multienvironment genome-based prediction Montesinos-López, Osval Antonio Montesinos-López, José Cricelio Montesinos-López, Abelardo Ramírez-Alcaraz, Juan Manuel Poland, Jesse Singh, Ravi Dreisigacker, Susanne Crespo, Leonardo Mondal, Sushismita Govidan, Velu Juliana, Philomin Espino, Julio Huerta Shrestha, Sandesh Varshney, Rajeev K Crossa, José G3 (Bethesda) Investigation When multitrait data are available, the preferred models are those that are able to account for correlations between phenotypic traits because when the degree of correlation is moderate or large, this increases the genomic prediction accuracy. For this reason, in this article, we explore Bayesian multitrait kernel methods for genomic prediction and we illustrate the power of these models with three-real datasets. The kernels under study were the linear, Gaussian, polynomial, and sigmoid kernels; they were compared with the conventional Ridge regression and GBLUP multitrait models. The results show that, in general, the Gaussian kernel method outperformed conventional Bayesian Ridge and GBLUP multitrait linear models by 2.2–17.45% (datasets 1–3) in terms of prediction performance based on the mean square error of prediction. This improvement in terms of prediction performance of the Bayesian multitrait kernel method can be attributed to the fact that the proposed model is able to capture nonlinear patterns more efficiently than linear multitrait models. However, not all kernels perform well in the datasets used for evaluation, which is why more than one kernel should be evaluated to be able to choose the best kernel. Oxford University Press 2021-11-29 /pmc/articles/PMC9210316/ /pubmed/34849802 http://dx.doi.org/10.1093/g3journal/jkab406 Text en © The Author(s) 2021. Published by Oxford University Press on behalf of Genetics Society of America. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Investigation
Montesinos-López, Osval Antonio
Montesinos-López, José Cricelio
Montesinos-López, Abelardo
Ramírez-Alcaraz, Juan Manuel
Poland, Jesse
Singh, Ravi
Dreisigacker, Susanne
Crespo, Leonardo
Mondal, Sushismita
Govidan, Velu
Juliana, Philomin
Espino, Julio Huerta
Shrestha, Sandesh
Varshney, Rajeev K
Crossa, José
Bayesian multitrait kernel methods improve multienvironment genome-based prediction
title Bayesian multitrait kernel methods improve multienvironment genome-based prediction
title_full Bayesian multitrait kernel methods improve multienvironment genome-based prediction
title_fullStr Bayesian multitrait kernel methods improve multienvironment genome-based prediction
title_full_unstemmed Bayesian multitrait kernel methods improve multienvironment genome-based prediction
title_short Bayesian multitrait kernel methods improve multienvironment genome-based prediction
title_sort bayesian multitrait kernel methods improve multienvironment genome-based prediction
topic Investigation
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9210316/
https://www.ncbi.nlm.nih.gov/pubmed/34849802
http://dx.doi.org/10.1093/g3journal/jkab406
work_keys_str_mv AT montesinoslopezosvalantonio bayesianmultitraitkernelmethodsimprovemultienvironmentgenomebasedprediction
AT montesinoslopezjosecricelio bayesianmultitraitkernelmethodsimprovemultienvironmentgenomebasedprediction
AT montesinoslopezabelardo bayesianmultitraitkernelmethodsimprovemultienvironmentgenomebasedprediction
AT ramirezalcarazjuanmanuel bayesianmultitraitkernelmethodsimprovemultienvironmentgenomebasedprediction
AT polandjesse bayesianmultitraitkernelmethodsimprovemultienvironmentgenomebasedprediction
AT singhravi bayesianmultitraitkernelmethodsimprovemultienvironmentgenomebasedprediction
AT dreisigackersusanne bayesianmultitraitkernelmethodsimprovemultienvironmentgenomebasedprediction
AT crespoleonardo bayesianmultitraitkernelmethodsimprovemultienvironmentgenomebasedprediction
AT mondalsushismita bayesianmultitraitkernelmethodsimprovemultienvironmentgenomebasedprediction
AT govidanvelu bayesianmultitraitkernelmethodsimprovemultienvironmentgenomebasedprediction
AT julianaphilomin bayesianmultitraitkernelmethodsimprovemultienvironmentgenomebasedprediction
AT espinojuliohuerta bayesianmultitraitkernelmethodsimprovemultienvironmentgenomebasedprediction
AT shresthasandesh bayesianmultitraitkernelmethodsimprovemultienvironmentgenomebasedprediction
AT varshneyrajeevk bayesianmultitraitkernelmethodsimprovemultienvironmentgenomebasedprediction
AT crossajose bayesianmultitraitkernelmethodsimprovemultienvironmentgenomebasedprediction